【题目】如图,已知∠MON,点A在射线OM上.根据下列方法画图.
①以O为圆心,OA长为半径画圆,交ON于点B,交射线OM的反向延长线于点C,连接BC;
②以OA为边,在∠MON的内部,画∠AOP=∠OCB;
③连接AB,交OP于点E;
④过点A作⊙O的切线,交OP于点F.
(1)依题意补全图形;
(2)求证∠MOP=∠PON;
(3)若∠MON=60°,OF=10,求AE的长.
【答案】(1)如图所示,见解析;(2)见解析;(3)AE=.
【解析】
(1)题干要求根据下列方法画图,根据题意用尺规补全图形即可.
(2)题干要求证∠MOP=∠PON,根据圆周角定理知道∠MON=2∠OCB,从而进行分析证明即可.
(3)根据FA是⊙O的切线,可以知道FA⊥OA,∠MON=60°,利用锐角三角函数可以求知OA=OB,进而求知∠MOP=∠PON,求出AE的长.
解:(1)如图所示:
(2)∵∠MON=2∠OCB,
∵∠AOP=∠OCB,
∴∠BOP=∠OCB=∠AOP,
即∠MOP=∠PON;
(3)∵∠MON=60°,
∴∠AOP=30°,
∵FA是⊙O的切线,
∴FA⊥OA,
∵OF=10,
∴OA=5,
∵OA=OB,
∴△OAB是等边三角形,
∵∠MOP=∠PON,
∴OE⊥AB,
∴AE=.
科目:初中数学 来源: 题型:
【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于( )
A. 20° B. 30° C. 40° D. 50°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知OA=12cm,OB=6cm.点P从点O开始沿0A边向点A以1cm/s的速度移动;点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间(0≤t<6),那么:
(1)设ΔPOQ的面积为y,求y关于t的函数关系式;
(2)当ΔPOQ的面积为4.5cm时,ΔPOQ沿直线PQ翻折后得到ΔPCQ.试判断点C是否落在直线AB上,并说明理由;
(3)当t为何值时,△POQ与△AOB相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y=ax2+bx+c | … | t | m | ﹣2 | ﹣2 | n | … |
且当x=﹣时,与其对应的函数值y>0,有下列结论:①函数图象的顶点在第四象限内;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<,其中,正确结论的是( )
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,二次函数的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.
(1)求m的值;
(2)求点B的坐标;
(3)该二次函数图像上有一点D(x,y)(其中,),使,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.
(1)设运动开始后第t秒钟后,五边形APQCD的面积为Scm2,写出S与t 的函数关系式,并指出自变量t的取值范围.
(2)t为何值时,S最小?最小值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②当x>﹣1时,y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2; ⑤3a+c<0.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.
(1)当运动时间为2s时,P、Q两点的距离为 cm;
(2)请你计算出发多久时,点P和点Q之间的距离是10cm;
(3)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com