分析 (1)把点A(1,0)、B(4,0)两点的坐标代入函数解析式,利用待定系数法求解;
(2)A、B关于对称轴对称,连接BC,则BC与对称轴的交点即为所求的点P,此时PA+PC=BC,四边形PAOC的周长最小值为:OC+OA+BC;根据勾股定理求得BC,即可求得;
(3)分两种情况分别讨论,即可求得.
解答 解:(1)由已知得$\left\{\begin{array}{l}{a+b+3=0}\\{16a+4b+3=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=\frac{3}{4}}\\{b=-\frac{15}{4}}\end{array}\right.$.
所以,抛物线的解析式为y=$\frac{3}{4}$x2-$\frac{15}{4}$x+3.
(2)∵A、B关于对称轴对称,如图1,连接BC,
∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,
∴四边形PAOC的周长最小值为:OC+OA+BC,
∵A(1,0)、B(4,0)、C(0,3),
∴OA=1,OC=3,BC=$\sqrt{O{B}^{2}+O{C}^{2}}$=5,
∴OC+OA+BC=1+3+5=9;
∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.
(3)∵B(4,0)、C(0,3),
∴直线BC的解析式为y=-$\frac{3}{4}$x+3,
①当∠BQM=90°时,如图2,设M(a,b),
∵∠CMQ>90°,
∴只能CM=MQ=b,
∵MQ∥y轴,
∴△MQB∽△COB,
∴$\frac{BM}{BC}$=$\frac{MQ}{OC}$,即$\frac{5-b}{5}$=$\frac{b}{3}$,解得b=$\frac{15}{8}$,代入y=-$\frac{3}{4}$x+3得$\frac{15}{8}$=-$\frac{3}{4}$a+3,解得a=$\frac{3}{2}$,
∴M($\frac{3}{2}$,$\frac{15}{8}$);
②当∠QMB=90°时,如图3,
∵∠CMQ=90°,
∴只能CM=MQ,
设CM=MQ=m,
∴BM=5-m,
∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,
∴△BMQ∽△BOC,
∴$\frac{m}{3}$=$\frac{5-m}{4}$,解得m=$\frac{15}{7}$,
作MN∥OB,
∴$\frac{MN}{OB}$=$\frac{CN}{OC}$=$\frac{CM}{BC}$,即$\frac{MN}{4}$=$\frac{CN}{3}$=$\frac{\frac{15}{7}}{5}$,
∴MN=$\frac{12}{7}$,CN=$\frac{9}{7}$,
∴ON=OC-CN=3-$\frac{9}{7}$=$\frac{12}{7}$,
∴M($\frac{12}{7}$,$\frac{12}{7}$).
综上,在线段BC上存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形,点M的坐标为($\frac{3}{2}$,$\frac{15}{8}$)或($\frac{12}{7}$,$\frac{12}{7}$).
点评 本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称-最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com