【题目】等边△ABC与正方形DEFG如图1放置,其中D,E两点分别在AB,BC上,且BD=BE.
(1)求∠DEB的度数;
(2)当正方形DEFG沿着射线BC方向以每秒1个单位长度的速度平移时,CF的长度y随着运动时间变化的函数图象如图2所示,且当t=时,y有最小值1;
①求等边△ABC的边长;
②连结CD,在平移的过程中,求当△CEF与△CDE同时为等腰三角形时t的值;
③从平移运动开始,到GF恰落在AC边上时,请直接写出△CEF外接圆圆心的运动路径的长度.
【答案】(1)∠BED=60°;(2)①2+2;②t=2﹣2或2+2;③.
【解析】
(1)证明△BDE是等边三角形即可解决问题.
(2)①如图2中,正方形DEFG平移过程中,FF′∥BC,易证四边形EFF′E′是平行四边形,由题意,当CF′⊥BC时,CF′的值最小,此时CF′=1,解直角三角形求出E′F′,CE′即可.
②分两种情形分别画出图象求解即可.
③如图5中,设△CE′F′的外接圆的圆心为I,连接IE′,CI,IF′,设直线FF′交AC于H,在CB上取一点J,使得CH=CJ,连接JH,IJ.证明△HCF′≌△JCI(SAS),推出JI=HF′,即可解决问题.
解:(1)如图1中,
∵△ABC是等边三角形,
∴∠B=60°,
∵BD=BE,
∴△BDE是等边三角形,
∴∠BED=60°.
(2)①如图2中,
如图正方形DEFG平移过程中,FF′∥BC,易证四边形EFF′E′是平行四边形,
由题意,当CF′⊥BC时,CF′的值最小,此时CF′=1,
在Rt△CE′F′中,∵∠E′CF′=90°,∠F′E′C=30°,CF′=1,
∴EF=E′F′=2,CE′=,
∵t=EE′=,
∴EE′=CE′=,
∵BE=DE=EF=2,
∴BC=BE+EE′+CE′=2+2.
②如图3中,当E′D′=E′F′=CE′=2时,△CEF与△CDE同时为等腰三角形,此时t=EE′=BC﹣BE﹣CE′=2+2﹣4=2﹣2.
如图4中,当E′C=E′D′=E′F′=2时,△CEF与△CDE同时为等腰三角形,此时t=EE′=BC+CE′﹣BE=BC=2+2.
综上所述,t=2﹣2或2+2时,△CEF与△CDE同时为等腰三角形.
③如图5中,设△CE′F′的外接圆的圆心为I,连接IE′,CI,IF′,设直线FF′交AC于H,在CB上取一点J,使得CH=CJ,连接JH,IJ.
∵IE′=IF′=IC,
∴∠F′E′C=∠F′IC,
∵∠F′E′C=30°,
∴∠CJF′=60°,
∴△CIF′是等边三角形,
∵CH=CJ,∠HCJ=60°,
∴△HCJ是等边三角形,
∴CH=CJ,CF′=CI,∠HCJ=∠F′CI=60°,
∴∠HCF′=∠JCI,
∴△HCF′≌△JCI(SAS),
∴F′H=IJ,∠CHF′=∠CJI=120°,
∴点I的运动轨迹是线段,且JI=HF′,
由①可知FH=,
∴△CEF外接圆圆心的运动路径的长度为.
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长均为1,线段AB的端点均在小正方形的顶点上.
(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;
(2)在图中画出以线段AB为一腰,底边长为的等腰三角形ABE,点E在小正方形的顶点,则CE= ;
(3)F是边AD上一动点,则CF+EF的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A坐标为(0,3),x轴上点P(t,0),将线段AP绕点P顺时针旋转90°得到PE,过点E作直线l⊥x轴于D,过点A作AF⊥直线l于F.
(1)当点E是DF的中点时,求直线PE的函数表达式.
(2)当t=5时,求△PEF的面积.
(3)在直线l上是否存在点G,使得∠APO=∠PFD+∠PGD?若存在,试用t的代数式表示点G的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“淮南牛肉汤”是安徽知名地方小吃.某分店经理发现,当每碗牛肉汤的售价为6元时,每天能卖出500碗;当每碗牛肉汤的售价每增加0.5元时,每天就会少卖出20碗,设每碗牛肉汤的售价增加元时,一天的营业额为元.
(1)求与的函数关系式(不要求写出的取值范围);
(2)考虑到顾客可接受价格元/碗的范围是,且为整数,不考虑其他因素,则该分店的牛肉汤每碗多少元时,每天的牛肉汤营业额最大?最大营业额是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=5,tanD=,点E在BC上运动(不与B,C重合),将四边形AECD沿直线AE翻折后,点C落在C′处,点D′落在D处,C′D′与AB交于点F,当C′D'⊥AB时,CE长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为考察甲、乙两种农作物的长势,研究人员分别抽取了6株苗,测得它们的高度(单位:cm)如下:
甲:98,102,100,100,101,99;乙:100,103,101,97,100,99.
(1)你认为哪种农作物长得高一些?说明理由;
(2)你认为哪种农作物长得更整齐一些?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.
(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是(填写序号);
(2)根据所选择的条件,证明四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;
(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+4x-1与y轴交于点C,CD∥x轴交抛物线于另一点D,AB∥x轴交抛物线于点A,B,点A在点B的左侧,且两点均在第一象限,BH⊥CD于点H.设点A的横坐标为m.
(1)当m=1时,求AB的长.
(2)若AH=(CH-DH),求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com