【题目】如图,平面直角坐标系中,已知点且为轴上点右侧的动点,以为腰作等腰,使直线交轴于点.
(1)求证:;
(2)求证:;
(3)当点运动时,点在轴上的位置是否发生改变,为什么?
【答案】(1)见解析(2)见解析(3)点P在y轴上的位置不发生改变,理由见解析
【解析】
(1)根据算术平方根和平方数的非负性质即可求得a、b的值,即可求得A,B点坐标,即可求得OA,AB长度,即可解题;
(2)易证∠OAC=∠BAD,即可证明△OAC≌△BAD,可得OC=BD,即可解题;
(3)点P在y轴上的位置不发生改变.理由:设∠AOB=∠ABO=,易证∠OBP是定值,根据OB长度固定和∠POB=90,即可解题.
(1)∵,
≥0,≥0,
∴a+b3=0,a2b=0,
解得:a=2,b=1,
∴A(1,3),B(2,0),
∴OA=,
AB=,
∴OA=AB;
(2)∵∠CAD=∠OAB,
∴∠CAD+∠BAC=∠OAB+∠BAC,即∠OAC=∠BAD,
在△OAC和△BAD中,
,
∴△OAC≌△BAD(SAS),
∴OC=BD;
(3)点P在y轴上的位置不发生改变.
理由:设∠AOB=∠ABO=,
∵由(2)知△AOC≌△ABD,
∴∠ABD=∠AOB=,
∵OB=2,∠OBP=180°∠ABO∠ABD=180°2α为定值,
∵∠POB=90,
∴OP长度不变,
∴点P在y轴上的位置不发生改变.
科目:初中数学 来源: 题型:
【题目】已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.
(1)求证:AC=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示,其中A(0,4),B(-2,2),C((-1,1),先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称.
(1)画出△A1B1C1和△A2B2C2,并写出A2,B2,C2的坐标;
(2)在x轴上确定一点P,使BP+A1P的值最小,请在图中画出点P;
(3)点Q在y轴上且满足△ACQ为等腰三角形,则这样的Q点有 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCO的顶点B(10,8),点A,C在坐标轴上,E是BC边上一点,将△ABE沿AE折叠,点B刚好与OC边上点D重合,过点E的反比例函数y=的图象与边AB交于点F,则线段BF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AC=BC=10,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC于F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)若sin∠E=,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴,轴分别交于,两点,点 是 轴上一点,沿直线 折叠 刚好落在 轴上处.
请解答下列问题:
(1),两点的坐标分别为_____________,____________.
(2)求的长;
(3)在轴上存在点,使三角形为等腰三角形,直接写出的坐标_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).
(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1;
(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算C1C2的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com