精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到BCAC分别交于点DE.的面积为,则的函数图象大致为( )

A.B.C.D.

【答案】B

【解析】

连接B′C,作AHB′C′,垂足为H,由已知以及旋转的性质可得AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°,继而可求出AH长,BC′的长,由等腰三角形的性质可得∠AB′C=∠ACB′,再根据∠AB′D=∠ACD=30°,可得∠DB′C=∠DCB′,从而可得B′D=CD,进而可得 B′E=x,由此可得C′E=2-x,再根据三角形面积公式即可求得yx的关系式,由此即可得到答案.

连接B′C,作AHB′C′,垂足为H

AB=AC∠B=30°

∴∠C=B=30°

△ABC绕点A逆时针旋转α(0<α<120°)得到

AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°

∴AH=AC′=1

C′H=

BC′=2C′H=2

AB′=AC

∴∠AB′C=∠ACB′

∵∠AB′D=∠ACD=30°

∴∠AB′C-∠AB′D=∠ACB′-∠ACD

∠DB′C=∠DCB′

∴B′D=CD

CD+DE=x

B′D+DE=x,即B′E=x

C′E=B′C′-B′E=2-x

∴y==×(2-x)×1=

观察只有B选项的图象符合题意,

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).

1)直接写出点M及抛物线顶点P的坐标;

2)求出这条抛物线的函数解析式;

3)施工队计划在隧道门口搭建一个矩形脚手架”ABCD,使AD点在抛物线上,BC点在地面OM上.为了筹备材料,需求出脚手架三根木杆ABADDC的长度之和的最大值是多少?请你帮施工队计算一下.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将二次函数yx25x6x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y2x+b与这个新图象有3个公共点,则b的值为(  )

A. 或﹣12B. 2C. 122D. 或﹣12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca0)的图象与y轴相交于点(03),并经过点(25),它的对称轴是x1,如图为函数图象的一部分.

1)求函数解析式,写出函数图象的顶点坐标;

2)在图中,画出函数图象的其余部分;

3)如果点Pn2n)在上述抛物线上,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=ax2+bx+c的顶点为B(–13),与x轴的交点A在点(–30)(–20)之间,以下结论:①b2–4ac=0;②a+b+c>0;③2a–b=0;④c–a=3.其中正确的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,yx成反比例,如图所示.根据图中提供的信息,解答下列问题:

(1)写出从药物释放开始,yx之间的两个函数关系式及相应的自变量取值范围;

(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区有一块长方形水稻试验田,试验田的长、宽(如图所示,长度单位:米),试验田分两部分,一部分为水渠,另一部分为新型水稻种植田(阴影部分).

(1)用含a,b的式子表示新型水稻种植田的面积是多少平方米(结果化成最简形式);

(2)a=30,b=40,在农民丰收节到来之时水稻成熟,计划先由甲型收割机收割一部分,再由乙型收割机收割剩余部分,甲型收割机收割水稻每平方米的费用为0.3元,乙型收割机收割水稻每平方米的费用为0.5元,若要收割全部水稻的费用不超过5000元,问甲型收割机最少收割多少平方米的水稻?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明、小亮两人用如图所示的两个分隔均匀的转盘做游戏:分别转动两个转盘,转盘停止后,将两个指针所指数字相加(若指针恰好停在分割线上,则重转一次).如果这两个数字之和小于8(不包括8),则小明获胜;否则小亮获胜。

(1)利用列表法或画树状图的方法表示游戏所有可能出现的结果;

(2)这个游戏对双方公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线轴交于两点(点在点左侧),与轴交于点,点抛物线的顶点.

1)求直线的解析式;

2)抛物线对称轴交轴于点为直线上方的抛物线上一动点,过点于点,当线段的长最大时,连接,过点作射线,且,点为射线上一动点(点不与点重合),连接中点,连接,求的最小值;

3)如图2,平移抛物线,使抛物线的顶点在射线上移动,点平移后的对应点分别为点轴上有一动点,连接是否能为等腰直角三角形?若能,请求出所有符合条件的点的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案