精英家教网 > 初中数学 > 题目详情

【题目】古希腊著名的毕达哥拉斯学派把13610…这样的数称为三角形数,而把14916…这样的数称为正方形数.从图中可以发现,任何一个大于1正方形数都可以看作两个相邻三角形数之和.下列等式中,符合这一规律的是(  )

A.133+10B.259+16C.3615+21D.4918+31

【答案】C

【解析】

本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+12,两个三角形数分别表示为nn+1)和n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.

A13不是正方形数;选项BD中等式右侧并不是两个相邻三角形数之和.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】结合数轴与绝对值的知识回答下列问题:

一般地,数轴上表示数m和数n的两点之间的距离公式为|mn|

1)例如:数轴上表示41的两点之间的距离为|41|=   

数轴表示5和﹣2的两点之间的距离为|5﹣(﹣2|=|5+2|=   

2)数轴上表示数a的点与表示﹣4的点之间的距离表示为   

数轴上表示数a的点与表示2的点之间的距离表示为   

若数轴上a位于﹣42之间,则|a+4|+|a2|的值为   

3)当a=   时,|a+5|+|a1|+|a4|的值最小,最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只小虫从点A出发向北偏西30°方向,爬行了3cm到点B,再从点B出发向北偏东60°爬了3cm到点C

1)试画图确定ABC的位置;

2)从图上量出点C到点A的距离(精确到01cm);

3)指出点C在点A的什么方位?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交ADF,交BCG,延长BA交圆于E.

(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;

(2)在(1)的条件不变的情况下,若GC=CD,求∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2bxca0图象如图所示,下列结论:①abc0;②2ab0;③当m1时,abam2bm;④abc0;⑤若,且,则,其中正确的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题

112(16)+(4)5

2

3

4(8a-7b)-(4a-5b)

5

6)先化简再求值, 其中

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:

①若a+b+c=0,则b2﹣4ac>0;

②若方程两根为﹣12,则2a+c=0;

③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;

④若b=2a+c,则方程有两个不相等的实根.其中正确的有(  )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.

(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)

(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)

测倾器的高度忽略不计,参考数据:tan53°≈,tan63.5°≈2)

查看答案和解析>>

同步练习册答案