【题目】如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求证:AE是 O的切线;
(2)求图中两部分阴影面积的和.
【答案】(1)见解析;(2)
【解析】
(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD的值;连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;
(2)阴影部分的面积由三角形BOD的面积+三角形ECO的面积-扇形DOF的面积-扇形EOG的面积,求出即可.
(1)∵AB与圆O相切,
∴OD⊥AB,
在Rt△BDO中,BD=2,tan∠BOD=,
∴OD=3;
连接OE.
∵AB与圆O相切,
∴OD⊥AB.
∵在Rt△BDO中,BD=2,tan∠BOD=BDOD=23,
∴OD=3.
∵∠A=90°,OD⊥AB,
∴AE∥OD.
∵OD=AE=3,AE∥OD,
∴四边形AEOD为平行四边形,
∴AD∥EO.
∵DA⊥AE,
∴OE⊥AC.
又∵OE为圆的半径,
∴AC为圆O的切线.
(2)∵OD∥AC,
∴BD/BA=OD/CA,即=,
∴AC=7.5,
∴EC=AC-AE=7.5-3=4.5,
∴S阴影=S△BDO+S△OEC-(S扇形FOD+S扇形EOG)
=×2×3+×3×4.5-=3+-=.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.
(1)求证:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡i=4:3,坡长AB=8米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长为 米.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连结CO,AD,∠BAD=20°,则下列说法中正确的是( )
A. ∠BOC=2∠BAD B. CE=EO C. ∠OCE=40° D. AD=2OB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=120°,⊙O是△ABC的外接圆,点P是上的一个动点.
(1)求∠AOC的度数;
(2)若⊙O的半径为2,设点P到直线AC的距离为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围.\
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校要从数学竞赛初赛成绩相同的四名学生(其中2名男生,2名女生)中,随机选出2名学生去参加决赛,则选出的2名学生恰好为1名男生和1名女生的概率为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象经过点,且与正比例函数的图象交于点,点的横坐标是.
(1)求一次函数的函数解析式;
(2)根据图象,写出当时,自变量的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com