精英家教网 > 初中数学 > 题目详情

【题目】如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条,如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和为(  )

A.215cm2B.250cm2C.300cm2D.320cm2

【答案】C

【解析】

首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x5cm,宽是6cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少,再得出答案.

解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x5cm,宽是6cm

5x6x5),

解得:x30

30×5×2300cm2),

答:两个所剪下的长条的面积之和为300cm2

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC中,AC=BC,以BC为直径的⊙OAB于点D,过点DDE⊥AC于点E,交BC的延长线于点F

求证:

1AD=BD

2DF⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.

1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.

2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)

3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1y1=1,当k≥2时,, [a]表示非负实数a的整数部分,例如[2.6]=2[0.2]=0.按此方案,则第2018棵树种植点的坐标为( )

A.32018B.22019C.2403D.3404

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.

(1)求抛物线的函数解析式.

(2)设点D在抛物线上,点E在抛物线的对称轴上,若四边形AODE是平行四边形,求点D的坐标.

(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足是M,是否存在点p,使得以P、M、A为顶点的三角形与BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将平行四边形ABCD折叠,使顶点D落在AB边上的点E处,折痕为AF,下列说法中不正确的是(  )

A.EFBCB.EFAEC.BECFD.AFBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是(

A. ∠A=∠C B. AD∥BC C. BE=DF D. AD=CB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情景:如图1,在等腰直角三角形ABC中∠ACB90°BCa.将AB绕点B顺时针旋转90°得到线段BD,连接CD,过点D作△BCDBC边上的高DE

易证△ABC≌△BDE,从而得到△BCD的面积为

简单应用:如图2,在RtABC中,∠ACB90°BCa,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含a的代数式表示△BCD的面积,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为4的正方形纸片沿折叠,落在边上的点,与点重合, 交于点,的中点,连接,的周长最小值是__________

查看答案和解析>>

同步练习册答案