精英家教网 > 初中数学 > 题目详情

【题目】如图,ABO的直径,PBA的延长线上,C为圆上一点,且∠PCA=∠B

1)求证:PCO相切;

2)若PA4O的半径为6,求BC的长.

【答案】1)见解析;(2

【解析】

1)连接OC,如图,利用圆周角定理得∠2+∠390°,再证明∠1∠3,则∠1+∠290°,然后根据切线的判定定理可得到PCO相切;

2)先利用勾股定理得到PC8,再证明PAC∽△PCB,利用相似比得,然后在Rt△ABC中,利用勾股定理得到BC2+BC2122,从而解BC的方程即可.

1)证明:连接OC,如图,

ABO的直径,

∴∠ACB90°,即∠2+∠390°

∵∠1B∠3B

∴∠1∠3

∴∠1+∠290°,即PCO90°

OCPC

PCO相切;

2)解:在Rt△POC中,PC8

∵∠CPABPC∠1B

∴△PAC∽△PCB

Rt△ABC中,AC2+BC2AB2

BC2+BC2122

BC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A﹣10),B50),C0)三点.

1)求抛物线的解析式;

2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

3)点Mx轴上一动点,在抛物线上是否存在一点N,使以ACMN四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店专售一品牌牙膏,其成本为22/支,销售中发现,该商品每天的销售量(支)与销售单价(元/支)之间存在如图所示的关系.

1)请求出之间的函数关系式;

2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?

3)在武汉爆发新型冠状病毒疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,在抗新型冠状病毒疫情期间,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象交于AB两点.

1)利用图中的条件,求反比例函数和一次函数的解析式.

2)求△AOB的面积.

3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过坐标原点轴上另一点,顶点的坐标为.矩形的顶点与点O重合,ADAB分别在x轴、y轴上,且AD=2AB=3

1)求该抛物线所对应的函数关系式;

2)将矩形以每秒个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动,设它们运动的时间为,直线与该抛物线的交点为(如图2所示)

①当,判断点是否在直线上,并说明理由;

②设PNCD以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形的边长为4,点分别在上,相交于点,点的中点,连接,则的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,以RtABC的斜边BC为一边在ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为原点,点A08),点Bm0),且m0.AOB绕点A逆时针旋转90°,得ACD,点OB旋转后的对应点为CD

1)点C的坐标为

2)①设BCD的面积为S,用含m的式子表示S,并写出m的取值范围;

②当S=6时,求点B的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:

普通消费:35/次;

白金卡消费:购卡280/张,凭卡免费消费10次再送2次;

钻石卡消费:购卡560/张,凭卡每次消费不再收费.

以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.

(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?

(2)设一年内去该健身中心健身x(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的yx的函数关系式;

(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.

查看答案和解析>>

同步练习册答案