精英家教网 > 初中数学 > 题目详情

【题目】解答
(1)阅读理解:
我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.
例如:角的平分线是到角的两边距离相等的点的轨迹.
问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.
理由:∵线段EF为△ABC的中位线,∴EF∥BC,
由平行线分线段成比例得:动点P为线段AM中点.
由此你得到动点P的运动轨迹是:
(2)知识应用:
如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.
(3)拓展提高:
如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.

①求∠AQB的度数;
②若AB=6,求动点Q运动轨迹的长.

【答案】
(1)线段EF
(2)

解:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′

∵△ABC是等边三角形,MN是中位线,

∴AM=BM=AN=CN,

∵AF=BE,

∴EM=FN,

∵MN∥BC,

∴∠AMN=∠B=∠GME=60°,

∵∠A=∠GEM=60°,

∴△GEM是等边三角形,

∴EM=EG=FN,

在△GQ′E和△NQ′F中,

∴△GQ′E≌△NQ′F,

∴EQ′=FQ′,

∵EQ=QF,

′点Q、Q′重合,

∴点Q在线段MN上,

∴段EF中点Q的运动轨迹是线段MN,

MN= BC= ×8=4.

∴线段EF中点Q的运动轨迹的长为4.


(3)

解:

①如图2中,

∵△APC,△PBD都是等边三角形,

∴AP=PC,PD=PB,∠APC=∠DPB=60°,

∴∠APD=∠CPB,

在△APD和△CPB中,

∴△APD≌△CPB,

∴∠ADP=∠CBP,设BC与PD交于点G,

∵∠QGD=∠PGB,

∴∠DQG=∠BPG=60°,

∴∠AQB=180°﹣∠DQG=120°

②由(1)可知点P的运动轨迹是 ,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,

则∠M=60°,

∴∠AOB=2∠M=120°,作OH⊥AB于H,则AH=BH=3,OH= ,OB=2

∴弧AB的长= = π.

∴动点Q运动轨迹的长 π


【解析】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.
知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′,△GQ′E≌△NQ′F,推出Q、Q′重合即可解决问题.
拓展提高:如图2中,(1)只要证明△APD≌△CPB,推出∠DQG=∠BPG=60°结论解决问题.(2)由(1)可知点P的运动轨迹是 ,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,作OH⊥AB于H,则AH=BH=3,OH= ,OB=2 ,利用弧长公式即可解决.
【考点精析】解答此题的关键在于理解弧长计算公式的相关知识,掌握若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】DEF中,DE=DF,点BEF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.

(1)当点C在线段BD上时,

①若点C与点D重合,请根据题意补全图1,并直接写出线段AEBF的数量关系为________;

②如图2,若点C不与点D重合,请证明AE=BF+CD;

(2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系,不用证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y1=﹣ x+1与x轴交于点A,与直线y2=﹣ x交于点B.

(1)求△AOB的面积;
(2)求y1>y2时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数 y=kx+b 的图象经过点(﹣1,1)和点(1,﹣5)

(1)求一次函数的表达式;

(2)此函数与 x 轴的交点是 A,与 y 轴的交点是 B,求△AOB 的面积;

(3)求此函数与直线 y=2x+4 的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了落实中央的强基惠民工程计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成若乙队单独施工则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15那么余下的工程由甲队单独完成还需5

1)这项工程的规定时间是多少天?

2)已知甲队每天的施工费用为6500乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为2的正方形ABCD中,点P、Q分别是边AB、BC上的两个动点(与点A、B、C不重合),且始终保持BP=BQ,AQ⊥QE,QE交正方形外角平分线CE于点E,AE交CD于点F,连结PQ.

(1)求证:△APQ≌△QCE;

(2)求∠QAE的度数;

(3)设BQ=x,当x为何值时,QF∥CE,并求出此时△AQF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.

(1)求a的值和直线AB的函数表达式;
(2)设△PMN的周长为C1 , △AEN的周长为C2 , 若 = ,求m的值;
(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+ E′B的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校公用10分钟.下列说法:
①公交车的速度为400米/分钟;
②小刚从家出发5分钟时乘上公交车;
③小刚下公交车后跑向学校的速度是100米/分钟;
④小刚上课迟到了1分钟.
其中正确的个数是(

A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

同步练习册答案