【题目】小明研究了这样一道几何题:如图 1,在ABC 中,把 AB 点 A 顺时针旋转 00 1800 得到 AB ,把 AC 绕点 A 逆时针旋转 得到 AC ,连接 BC .当 180° 时, 请问ABC 边 BC 上的中线 AD 与 BC 的数量关系是什么? 以下是他的研究过程:
特例验证:
(1)①如图 2,当ABC 为等边三角形时,AD 与 BC 的数量关系为 AD BC ;
②如图 3,当BAC 900 , BC 8时,则 AD 长为 .
猜想论证:
(2)在图 1 中,当ABC 为任意三角形时,猜想 AD 与 BC 的数量关系,并给予证明.
拓展应用
(3)如图 4,在四边形 ABCD ,,,,,,在四边形内部是否存在点 P ,使PDC 与PAB 之间满足小明探究的问题中的边角关系?若存在, 请画出点 P 的位置(保留作图痕迹,不需要说明)并直接写出PDC 的边 DC 上的中线 PQ 的长度;若不存在,说明理由.
【答案】(1)① ②4 (2),证明见解析 (3)存在,作图见解析,
【解析】
(1)①首先证明是含有30°的直角三角形,可得,即可解决问题;②首先证明,根据直角三角形斜边中线定理即可解决问题;
(2)结论:,延长AD到M,使得,连接,先证明四边形是平行四边形,再证明,即可解决问题;
(3)存在,如图4,延长AD交BC的延长线于M,作于E,做线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN,连接DF交PC于O,先证明,再证明,即可得出结论,再根据勾股定理求出PC的长,即可求出PQ的长.
(1)①∵△ABC是等边三角形
∴
∵
∴
∵
∴
∴
∴
故答案为:
②∵
∴
∵
∴
∴
∴
故答案为:4;
(2)
如图(1)中,延长AD到M,使得,连接
∵
∴四边形是平行四边形
∴
∵
∴
∵
∴
∴
∴;
(3)存在,如图4,延长AD交BC的延长线于M,作于E,做线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN,连接DF交PC于O
∵
∴
∵
∴
在Rr△DCM中
∵
∴
在Rt△BEM中
∴
∴
∴
∵
∴
∵
∴,
在Rt△CDF中
∵
∴
∴
∴
∴
∵
∴四边形CDPF是矩形
∴
∴
∴△ADP是等边三角形
∴
∵
∴
∴
∴由(1)结论得
∴PDC 与PAB 之间满足小明探究的问题中的边角关系
在Rt△FCP中
∴
∴
∴.
科目:初中数学 来源: 题型:
【题目】图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字2,3,4,5.图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子在桌面掷出后,看骰子落在桌面上(即底面)的数字是几,就从图中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法继续……
(1)随机掷一次骰子,则棋子跳动到点C处的概率是 .
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小飞文具店今年7月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从8月份开始进行销售,若每本售价为11元,则可全部售完;且每本售价每增长1元,销量就减少30本.
(1)若该种笔记本在8月份的销售量不低于2200本,则8月份售价应不高于多少元?
(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量进行了销售调整,售价比8月份在(1)的条件下的最高售价减少了m%,结果9月份的销量比8月份在(1)的条件下的最低销量增加了m%,9月份的销售利润达到6600元,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并按要求完成相应的任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数、公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和 r 分别为外接圆和内切圆的半径,O 和 I 分别为其外心和内心,则OI R2Rr .
下面是该定理的证明过程(借助了第(2)问的结论):
延长AI 交⊙O 于点 D,过点 I 作⊙O 的直径 MN,连接 DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI.∴,∴ IA ID IM IN ①
如图②,在图 1(隐去 MD,AN)的基础上作⊙O 的直径DE,连接BE,BD,BI,IF
∵DE 是⊙O 的直径,∴∠DBE=90°.
∵⊙I 与 AB 相切于点 F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB.
∴,∴②,
由(2)知:,
∴
又∵,
∴ 2Rr(R d )(R d ) ,
∴ R d 2Rr
∴ d R 2Rr
任务:(1)观察发现: IM R d , IN (用含R,d 的代数式表示);
(2)请判断 BD 和 ID 的数量关系,并说明理由.(请利用图 1 证明)
(3)应用:若△ABC 的外接圆的半径为 6cm,内切圆的半径为 2cm,则△ABC 的外心与内心之间的距离为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按四个等级进行统计(说明:级:90分~100分;级:75分~89分;级:60分~74分;级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:
(1)学校在七年级各班共随机调查了________名学生;
(2)在扇形统计图中,级所在的扇形圆心角的度数是_________;
(3)请把条形统计图补充完整;
(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中级学生约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,先将抛物线y=2x2﹣4x关于y轴作轴对称变换,再将所得的抛物线,绕它的顶点旋转180°,那么经两次变换后所得的新抛物线的函数表达式为( )
A.y=﹣2x﹣4xB.y=﹣2x+4x
C.y=﹣2x﹣4x﹣4D.y=﹣2x+4x+4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有_____个正方形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com