【题目】如图,Rt△ABC中,∠ACB=90°,AC=9,BC=12,D是AB边的中点,P是BC边上一动点(点P不与B、C重合),若以D、C、P为顶点的三角形与△ABC相似,则线段PC=__________.
【答案】6或
【解析】
由Rt△ABC中,∠ACB=90°,AC=9,BC=12,D是AB边的中点,即可求得AB与CD的值,又由以D、C、P为顶点的三角形与△ABC相似,可得∠DPC=90°或∠CDP=90°,然后根据相似三角形的对应边成比例,即可求得PC的值.
∵Rt△ABC中,∠ACB=90°,AC=9,BC=12,
∴AB=15,
∵D是AB边的中点,
∴CD=BD=AB=7.5,
∵以D、C、P为顶点的三角形与△ABC相似,
∴∠DPC=90°或∠CDP=90°,
(1)如图1:
若∠DPC=90°,则DP∥AC,
∴==,
∴BP=BC=6,
则PC=6;
(2)如图2:
若∠CDP=90°,则△CDP∽△BCA,
∴=,
即=,
∴PC=.
综上所述:PC=6或.
故答案为:6或.
科目:初中数学 来源: 题型:
【题目】(12分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.
(1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?
(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知:如图1,AB是的直径,点P为上一点(且点P不与A、B重合)连接PA,PB,的角平分线PC交于点C.
①若,求AB的长
②求证:
(2)如图2,在正方形ABCD中,,若点P满足,且,请直接写出点B到AP的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是正方形ABCD的边BC延长线上一点,连接DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.
(1)求证:DGBC=DFBG;
(2)连接CF,求∠CFB的大小;
(3)作点C关于直线DE的对称点H,连接CH,FH.猜想线段DF,BF,CH之间的数量关系并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【阅读理解】
某科技公司生产一种电子产品,该产品总成本包括技术成本、制造成本、销售成本三部分。经核算,2016年该产品各部分成本所占比例约为2:a:1,且2016年该产品的技术成本、制造成本分别为400万元、1400万元。
(1)确定a的值,并求2016年产品总成本为多少万元。
(2)为降低总成本,该公司2017年及2018年增加了技术投入,确保这两年技术成本都比前一年增加一个相同的百分数m(m<50%),制造成本在这两年里都比前一年减少一个相同的百分数2m;同时为了扩大销售量,2018年的销售成本将在2016年的基础上提高10%,经过以上变革,预计2018年该产品总成本达到2016年该产品总成本的。求m的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于的一元二次方程.
(1)求证:无论k取不为1的任何值方程总有两个不相等的实数根.
(2)设是该方程的两个实数根,记,的值能为1吗?若能,求出此时的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的动点和图形,给出如下定义:如果为图形上一个动点,,两点间距离的最大值为,,两点间距离的最小值为,我们把的值叫点和图形间的“和距离”,记作(,图形).
(1)如图,正方形的中心为点,.
①点到线段的“和距离”(,线段)=______;
②设该正方形与轴交于点和,点在线段上,(,正方形)=7,求点的坐标.
(2)如图2,在(1)的条件下,过,两点作射线,连接,点是射线上的一个动点,如果(,线段),直接写出点横坐标取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com