【题目】为了解某校八年级学生一门课程的学习情况,小佳和小丽分别对八年级1班和2班本门课程的期末成绩进行了调查分析.小佳对八年级1班全班学生(25名)的成绩进行分析,过程如下收集、整理数据:
表一:
分数段 班级 | ||||
八年级1班 | 7 | 5 | 10 | 3 |
表二:
统计量 班级 | 平均数 | 中位数 | 众数 | 极差 | 方差 |
八年级1班 | 78 | 85 | 36 | 105.28 |
小丽用同样的方式对八年级2班全班学生(25名)的成绩进行分析,变数据如下:
统计量 班级 | 平均数 | 中位数 | 极差 | 方差 | |
八年级2班 | 75 | 76 | 73 | 44 | 146.8 |
根据以上信息,解决下列问题:
(1)已知八年级1班学生的成绩处在这一组的数据如下:.根据上述数据,将表二补充完整:
(2)你认为哪个班级的成绩更为优异?请说明理由
【答案】(1)80;(2)八年级1班更优异
【解析】
(1)根据中位数的定义找出第13个数,然后确定80≤x<90这一组中最小的数即可;
(2)从平均数、中位数、众数和方差的意义可判断八年级1班学生的成绩更为优异.
(1)
由已知可得,中位数在第13个数,因为前面已经有12个数据,所以落在80≤x<90,最小值80为所求.
表二
统计量 班级 | 平均数 | 中位数 | 众数 | 极差 | 方差 |
八年级1班 | 78 | 80 | 85 | 36 | 105.28 |
(2)八年级1班更优异,理由如下:可以从平均数、中位数、众数、方差等角度分析,理由合理即可
八年级1班学生的成绩的平均数比2班高,1班的中位数比2班的中位数大,并且1班的众数为85,比2班的众数大,1班的方差比2班小,比较稳定.
科目:初中数学 来源: 题型:
【题目】在中,,,于点.
(1)如图1,点,分别在,上,且,当,时,求线段的长;
(2)如图2,点,分别在,上,且,求证:;
(3)如图3,点在的延长线上,点在上,且,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
(1)将△ABC沿轴方向向左平移6个单位,画出平移后得到的△A1B1C1;
(2)将△ABC绕着点O顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2 、C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l:与直线,直线分别交于点A,B,直线与直线交于点.
(1)求直线与轴的交点坐标;
(2)横、纵坐标都是整数的点叫做整点.记线段围成的区域(不含边界)为.
①当时,结合函数图象,求区域内的整点个数;
②若区域内没有整点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线经过点,与轴交于点.
求这条抛物线的解析式;
如图1,点P是第三象限内抛物线上的一个动点,当四边形的面积最大时,求点的坐标;
如图2,线段的垂直平分线交轴于点,垂足为为抛物线的顶点,在直线上是否存在一点,使的周长最小?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司其有名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.
频率分布表
组别 | 销售数量(件) | 频数 | 频率 |
A | |||
B | |||
C | |||
D | |||
E | |||
合计 |
请根据以上信息,解决下列问题:
(1)频数分布表中,________、________:
(2)补全频数分布直方图;
(3)如果该季度销量不低于件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个发电厂,每焚烧一吨垃圾,发电厂比发电厂多发40度电,焚烧20吨垃圾比焚烧30吨垃圾少1800度电.
(1)求焚烧1吨垃圾,和各发多少度电?
(2)两个发电厂共焚烧90吨垃圾,焚烧的垃圾不多于焚烧的垃圾的两倍,求厂和厂总发电量的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八(1)班学生为了了解某小区家庭月均用水情况,随机调查了该小区部分家庭并将调查数据进行整理,请你根据提供的信息,解答下列问题:
级别 | A | B | C | D | E | F |
月均用水量x(t) | 0<x≤5 | 5<x≤10 | 10<x≤15 | 15<x≤20 | 20<x≤25 | 25<x≤30 |
频数(户) | 6 | 12 | m | 10 | 4 | 2 |
频率 | 0.12 | n | 0.32 | 0.2 | 0.08 | 0.04 |
(1)本次调查采用的方式是 (选填“普查”或“抽样调查”),m= ,n= ;
(2)请你补充频数分布直方图;
(3)若将月平均用水量的频数绘制成扇形统计图,则月均用水量15≤x≤20”的圆心角度数是 °;
(4)若该小区共有5000户家庭,求该小区月均用水量超过15t的家庭大约有多少户?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com