【题目】如图,在矩形中,为上一点,且,,点,同时从点出发,点以每秒的速度沿向终点运动,点以每秒2的速度沿折线向终点运动,设运动的时间为,,经过的路线与围成的图形面积为,则关于的图象大致是( )
A.B.C.D.
【答案】B
【解析】
根据矩形的性质动点BC=AD=4,AB=CD=3,∠BCD=∠D=90°,AD∥BC,求出∠BCE=∠DEC=45°,由勾股定理求出CE=,分三段:当时,当时,当时,分别求出函数解析式即可进行判断.
∵四边形ABCD是矩形,
∴BC=AD=4,AB=CD=3,∠BCD=∠D=90°,AD∥BC,
∵,
∴∠BCE=∠DEC=45°,
∴CE=,
当时,CP=,CQ=2x,∴PH=CH=x,
∴;
当时,CP=,BQ=2x-4,
过点P作PH⊥BC于H,作MN∥AD,则四边形ADNM是矩形,四边形PHCN是矩形,
∴MN=AD=4,PN=CH=x,
∴MP=4-x,
∴
=;
当时,点P与点E重合,
∴=x+6;
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,直线经过点A(3,0)和点B(0,2).
(1)求直线的解析式;
(2)直线与函数的图象交于点C(C在第二象限),若ΔCOB的面积与ΔAOB的面积相等,求出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.
(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是 ;
(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”, 请用树形图或列表法中的一种,求他演唱歌曲“1”和“4”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在矩形中,是对角线,于点,于点.
(1)如图1,求证:;
(2)如图2,当时,连接、,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形面积的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的顶点的坐标为.
(1)求,的值;
(2)已知点为抛物线上异于的一点,且点横、纵坐标相等,为轴上任意一点,当取最小值时,求出点坐标和此时的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】内接于,,连接;
(1)如图1,连接并延长交于点,连接,求证:;
(2)如图2,延长交于点H,点F为BH上一点,连接AF,若,求证:;
(3)在(2)的条件下,如图3,点E为AB上一点,点D为上一点,连接、,若,若,,,连接,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的对称轴是.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④2c-3b>0;⑤a﹣b≥m(am﹣b)(m≠-1);其中所有正确的结论是( )
A.①②③B.①③④C.①③④⑤D.②④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘船由A港沿北偏东60°方向航行20km至B港,然后再沿北偏西30°方向航行20km至C港.
(1)求A,C两港之间的距离;(结果保留到0.1km)
(2)确定C港在A港的什么方向(参考数据:≈1.414,≈1.732)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com