【题目】某商场销售一种产品,每件产品的成本为2400元,销售单价定位3000元,该商场为了促销,规定客户一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元;
(1)设一次购买这种产品x(x≥10)件,商场所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围;
(2)在客户购买产品的件数尽可能少的前提下,商场所获的利润为12000元,此时该商场销售了多少件产品?
(3)填空:该商场的销售人员发现,当客户一次购买产品的件数在某一个区间时,会出现随着一次购买的数量的增多,商场所获的利润反而减少这一情况,客户一次购买产品的数量x满足的条件是 (其它销售条件不变)
【答案】(1);(2)30;(3)35<x≤50.
【解析】试题分析:(1)利用单价利润件数=利润列函数关系式,按照不同条件要列分段函数,注意求定义域.(2)令函数值为12000,解方程.(3)求二次函数的增减性, y随x的增大而减小.
试题解析:
解:(1)当一次购买这种产品x(x≥10)件时,销售单价为3000﹣10(x﹣10),由题意可知,3000﹣10(x﹣10)≥2600,解得:x≤50,∴当10≤x≤50时,y=[3000﹣10(x﹣10)﹣2400]x,即y=﹣10x2+700x,
当x>50时,y=200x,
综上所述: .
(2)当0≤x<10时,由600x=12000可得x=20>10,舍去,
当10≤x≤50时,﹣10x2+700x=12000,解得:x=30或x=40,当x>50时,200x=12000,解得:x=60,∵客户购买产品的件数应尽可能少,∴x=30,答:商场销售了30件产品时,商场所获的利润为12000元.
(3)∵当10≤x≤50时,y=﹣10x2+700x=﹣10(x﹣35)2+12250,
∴当35<x≤50时,y随x的增大而减小,即客户一次购买产品的数量x满足的35<x≤50时,会出现随着一次购买的数量的增多,商场所获的利润反而减少这一情况,故答案为:35<x≤50.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.
(1)如图(1),当点D在边BC上时,且n=36°,则∠BAD= _________,∠CDE= _________.
(2)如图(2),当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由.
(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的顶点、分别在、轴的正半轴上,点在反比例函数的第一象限内的图像上,,,动点在轴的上方,且满足.
(1)若点在这个反比例函数的图像上,求点的坐标;
(2)连接、,求的最小值;
(3)若点是平面内一点,使得以、、、为顶点的四边形是菱形,则请你直接写出满足条件的所有点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,过点的直线,为边上一动点(不与,重合),过点作,交直线于点,垂足为,连接,.
(1)求证:;
(2)当移动到的什么位置时,四边形是菱形?说明你的理由;
(3)若点移动到中点,则当的大小满足什么条件时,四边形是正方形?请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)按要求将下列几何体进行分类,并将分类后几何体的名称写在对应的括号内.
柱体:{ …}
锥体:{ …}
(2)6个完全相同的正方体组成如图所示的几何体,画出该几何体从正面,左面看到的形状图(用阴影画在所给的方格中)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设x1、x2是一元二次方程2x2﹣7x+5=0的两根,利用一元二次方程根与系数的关系,求下列各式的值.
(1)x12x2+x1x22; (2)(x1﹣x2)2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为53°,老鼠躲藏处M(点M在DE上)距D点3米.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?
(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般地,二元一次方程的解可以转化为点的坐标,其中x的值对应为点的横坐标,y的值对应为点的纵坐标,如二元一次方程x2y=0的解 和 可以转化为点的坐标A(0,0)和B(2,1).以方程x2y=0的解为坐标的点的全体叫做方程x2y=0的图象。
(1)写出二元一次方程x2y=0的任意一组解___,并把它转化为点C的坐标___;
(2)在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,如方程x2y=0的图象是由该方程所有的解转化成的点组成,在图中描出点A. 点B和点C,观察它们是否在同一直线上;
(3)取满足二元一次方程x+y=3的两个解,并把它们转化成点的坐标,画出二元一次方程x+y=3的图象;
(4)根据图象,写出二元一次方程x2y=0的图象和二元一次方程x+y=3的图象的交点坐标___,由此可得二元一次方程组 的解是___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com