分析 (1)利用因式分解法把原方程转化为2x+1=0或x+1=0,然后解两个一次方程即可;
(2)利用平方差公式原方程转化为2(x+3)-3(x-3)=0或2(x+3)+3(x-3)=0,然后解两个一次方程即可.
解答 解:(1)(2x+1)(x+1)=0,
2x+1=0或x+1=0,
所以x1=-$\frac{1}{2}$,x2=-1;
(2)[2(x+3)-3(x-3)][[2(x+3)+3(x-3)]=0,
2(x+3)-3(x-3)=0或2(x+3)+3(x-3)=0,
所以x1=15,x2=$\frac{3}{5}$.
点评 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\frac{4}{3}$$\sqrt{5}$ | C. | 3$\sqrt{3}$ | D. | $\frac{3}{2}$$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 相等、平分且垂直 | B. | 相等且平分 | C. | 相等且垂直 | D. | 垂直且平分 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{3}$+$\sqrt{5}$=$\sqrt{8}$ | B. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | C. | $\sqrt{(-3)^{2}}$=-3 | D. | $\sqrt{7}$-$\sqrt{5}$=$\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com