精英家教网 > 初中数学 > 题目详情

【题目】如图,小明想测量学校教学楼的高度,教学楼AB的后面有一建筑物CD,他测得当光线与地面成22°的夹角时,教学楼在建筑物的墙上留下高2米高的影子CE;而当光线与地面成45°的夹角时,教学楼顶A在地面上的影子F与墙角C13米的距离(点B,F,C在同一条直线上),则AE之间的长为_____米.(结果精确到lm,参考数据:sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)

【答案】27

【解析】

首先构造直角三角形AEM,利用tan22°= ,即可求出教学楼AB的高度;再利用RtAME中,cos22°=,求出AE即可.

过点EEMAB,垂足为M,如图所示:

ABxm,
RtABF中,∠AFB=45°,
BF=AB=xm,
BC=BF+FC=(x+13)m,
RtAEM中,AM=AB-BM=AB-CE=(x-2)m,
tanAEM=AEM=22°,
=0.4,
解得x≈12,
ME=BC=BF+13≈12+13=25(m).
RtAEM中,cosAEM=
AE=
AE的长约为27m.
故答案是:27.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,边上一点,将沿翻折,点落在点处,当为直角三角形时,________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知为等边三角形,点为直线上一动点(不与点、点重合).连接,以为边向逆时针方向作等边,连接

1)如图1,当点在边上时:

①求证:

②判断之间的数量关系是

2)如图2,当点在边的延长线上时,其他条件不变,判断之间存在的数量关系,并写出证明过程;

3)如图3,当点在边的反向延长线上时,其他条件不变,请直接写出之间存在的数量关系为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC∽△ADEAB30cmBD18cmBC20cm,∠BAC75°,∠ABC40°

求:(1)∠ADE和∠AED的度数;

2DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD90°,点D在边AB上,点E在边AC的左侧,连接AE

1)求证:AEBD

2)试探究线段ADBDCD之间的数量关系;

3)过点CCFDEAB于点F,若BDAF12CD,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.

(1)求反比例函数的解析式;

(2)若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.

(1)求抛物线对应的二次函数的表达式;

(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;

(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是轴上使得∣PA—PB∣的值最大的点,Q是轴上使得QA+QB的值最小的点,则OP·OQ=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:同学们在操场的一个圆形区域内玩投掷沙包的游戏,圆形区域由5个过同一点且半径不同的圆组成.经过多次实验,发现沙包如果都能落在区域内时,落在2、4两个阴影内的概率分别是0.360.21,设最大的圆的直径是5米,则1、3、5三个区域的面积和是_____

查看答案和解析>>

同步练习册答案