精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AD是△ABC的高线,CE是△ABC的角平分线,它们相交于点P

1)若∠B40°,∠AEC75°,求证:ABBC

2)若∠BAC90°,AP为△AECEC上中线,求∠B的度数.

【答案】1)证明见解析;(230°.

【解析】

由三角形的内角和可求出∠ECB35°,根据角平分线的定义可求∠ACB70°,进而可求出∠BAC70°,从而结论可证;

2)由AP是△AECEC上的中线可知APPC,从而∠PAC=∠PCA,由CE是∠ACB的平分线,可证∠PAC=∠PCA=∠PCD,从而可求出∠PAC的度数,然后求出∠BAD60°,继而可求出∠B的值.

1)证明:∵∠B40°,∠AEC75°,

∴∠ECB=∠AEC﹣∠B35°,

CE平分∠ACB

∴∠ACB2BCE70°,

BAC180°﹣∠B﹣∠ACB180°﹣40°﹣70°=70°,

∴∠BAC=∠BCA

ABAC

2)∵∠BAC90°,AP是△AECEC上的中线,

APPC

∴∠PAC=∠PCA

CE是∠ACB的平分线,

∴∠PAC=∠PCA=∠PCD

∵∠ADC90°,

∴∠PAC=∠PCA=∠PCD90°÷330°,

∴∠BAD60°,

∵∠ADB90°,

∴∠B90°﹣60°=30°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC 中,AB=ACDE是斜边BC上两点,且∠DAE=45°,将△ABE绕点顺时针旋转90后,得到△ACF,连接DF.下列结论中:①∠DAF=45° ②△≌△ AD平分∠EDF 正确的有______________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D(﹣1,1)且经过点B,连接AB,直线AB与此抛物线的另一个交点为C,则SBCD:SABO=( )

A.8:1
B.6:1
C.5:1
D.4:1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1: ,求旗杆AB的高度( ,结果精确到个位).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图a是长方形纸带(提示:ADBC),将纸带沿EF折叠成图b,再沿GF折叠成图c

1)若∠DEF20°,则图b中∠EGB______,∠CFG______

2)若∠DEF20°,则图c中∠EFC______

3)若∠DEFα,把图c中∠EFCα表示为______

4)若继续按EF折叠成图d,按此操作,最后一次折叠后恰好完全盖住∠EFG,整个过程共折叠了9次,问图a中∠DEF的度数是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.

(1)求证:CE是⊙O的切线;
(2)求证:CG=BG;
(3)若∠DBA=30°,CG=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.

(1)求一次函数的解析式

(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由

(3)若该一次函数的图象与x轴交于D点,求BOD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列条件中,不能证明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADCBD=DC

C.B=CBAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A市气象站测得台风中心在A市正东方向300千米的B处,以10千米/时的速度向北偏西60°的BF方向移动,距台风中心200千米范围内是受台风影响的区域.

(1)A市是否会受到台风的影响?写出你的结论并给予说明;

(2)如果A市受这次台风影响,那么受台风影响的时间有多长?

查看答案和解析>>

同步练习册答案