精英家教网 > 初中数学 > 题目详情

【题目】(感知)如图①,点CAB中点,CDABPCD上任意一点,由三角形全等的判定方法“SAS”易证PAC≌△PBC,得到线段垂直平分线的一条性质“线段垂直平分线上的点到线段两端的距离相等”

(探究)如图②,在平面直角坐标系中,直线y=-x+1分别交x轴、y轴于点A和点B,点CAB中点,CDABOA于点D,连结BD,求BD的长

(应用)如图③

1)将线段AB绕点A顺时针旋转90°得到线段AB′,请在图③网格中画出线段AB;

2)若存在一点P,使得PA=PB′,且APB≠90°,当点P的横、纵坐标均为整数时,则AP长度的最小值为______

【答案】探究:BD的长为;应用:(1)见解析;(2)5.

【解析】

探究:根据直线解析式,求出点AB坐标,得到BOAO的长,设BD的长为a,根据勾股定理列方程可求出BD

应用:(1)根据旋转的性质作图即可;

(2)根据题意可知P点坐标在AB’线段垂直平分线上,如图所示,点P’是垂直平分线上最近的格点,但是此时,不符合题意,根据网格特点可知垂直平分线上下一个格点位置,由网格特点和勾股定理可得符合题意的AP=5.

解:探究:

由题意得:

时,;当时,

.

BD的长为a

∵点CAB中点,OA于点D

中,

的长为

应用:(1)如图,线段即为所求.

(2)根据题意可知P点坐标在AB’线段垂直平分线上,如图所示,点P’是垂直平分线上最近的格点,但是此时,不符合题意,根据网格特点可知垂直平分线上下一个格点位置,由网格特点和勾股定理可得符合题意的AP=5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:

1)补全条形统计图,补全扇形统计图中乐器所占的百分比;

2)本次调查学生选修课程的众数__________

3)若该校有1200名学生,请估计选修绘画的学生大约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形AOBC中,O为坐标原点,OAOB分别在x轴、y轴上,点B的坐标为(03),∠ABO30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(  )

A. ()B. (2)C. ()D. (3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线分别交轴,轴于两点.点的坐标为,抛物线经过两点.

1)求抛物线的表达式;

2)如图1是线段上一点,连接,若的值最小,求点坐标;

3)如图2,在(2)的前提下,直线与直线的交点为,过点作轴的平行线交抛物线于点,若是抛物线上一点,轴上一点,是否存在以为顶点且为边的平行四边形,若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中(如图),已知二次函数(其中abc是常数,且a0)的图像经过点A0-3)、B10)、C30),联结ABAC

1)求这个二次函数的解析式;

2)点D是线段AC上的一点,联结BD,如果,求tan∠DBC的值;

3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中: ①d没有最大值; ②d没有最小值; ③ -1<x<3时,d 随x的增大而增大; ④满足d=5的点P有四个.其中正确结论的个数有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ACB90°AC3BC7,点P是边AC上不与点AC重合的一点,作PDBCAB边于点D

1)如图1,将APD沿直线AB翻折,得到AP'D,作AEPD.求证:AEED

2)将APD绕点A顺时针旋转,得到AP'D',点PD的对应点分别为点P'D'

①如图2,当点D'ABC内部时,连接PCD'B,求证:AP'C∽△AD'B

②如果APPC51,连接DD',且DD'AD,那么请直接写出点D'到直线BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】长方形中,边的长为,边的长为,是长方形边上的一个动点,当三点构成的三角形为等腰三角形时,的长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数yax23ax4a的图象与x轴交于AB两点(点A在点B的左侧),与y轴交于点C(0,﹣3)

1)求二次函数的表达式及点A、点B的坐标;

2)若点D在二次函数图象上,且,求点D的横坐标;

3)将直线BC向下平移,与二次函数图象交于MN两点(MN左侧),如图2,过MMEy轴,与直线BC交于点E,过NNFy轴,与直线BC交于点F,当MN+ME的值最大时,求点M的坐标.

查看答案和解析>>

同步练习册答案