【题目】(感知)如图①,点C是AB中点,CD⊥AB,P是CD上任意一点,由三角形全等的判定方法“SAS”易证△PAC≌△PBC,得到线段垂直平分线的一条性质“线段垂直平分线上的点到线段两端的距离相等”
(探究)如图②,在平面直角坐标系中,直线y=-x+1分别交x轴、y轴于点A和点B,点C是AB中点,CD⊥AB交OA于点D,连结BD,求BD的长
(应用)如图③
(1)将线段AB绕点A顺时针旋转90°得到线段AB′,请在图③网格中画出线段AB;
(2)若存在一点P,使得PA=PB′,且∠APB′≠90°,当点P的横、纵坐标均为整数时,则AP长度的最小值为______.
【答案】探究:BD的长为;应用:(1)见解析;(2)5.
【解析】
探究:根据直线解析式,求出点A、B坐标,得到BO、AO的长,设BD的长为a,根据勾股定理列方程可求出BD;
应用:(1)根据旋转的性质作图即可;
(2)根据题意可知P点坐标在AB’线段垂直平分线上,如图所示,点P’是垂直平分线上最近的格点,但是此时,不符合题意,根据网格特点可知垂直平分线上下一个格点位置,由网格特点和勾股定理可得符合题意的AP=5.
解:探究:
由题意得:
当时,;当时,;
,.
,.
设BD的长为a.
∵点C是AB中点,交OA于点D,
,.
在中,,
,,
,.
的长为.
应用:(1)如图,线段即为所求.
(2)根据题意可知P点坐标在AB’线段垂直平分线上,如图所示,点P’是垂直平分线上最近的格点,但是此时,不符合题意,根据网格特点可知垂直平分线上下一个格点位置,由网格特点和勾股定理可得符合题意的AP=5.
科目:初中数学 来源: 题型:
【题目】为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)补全条形统计图,补全扇形统计图中乐器所占的百分比;
(2)本次调查学生选修课程的“众数”是__________;
(3)若该校有1200名学生,请估计选修绘画的学生大约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线分别交轴,轴于,两点.点的坐标为,抛物线经过,两点.
(1)求抛物线的表达式;
(2)如图1,是线段上一点,连接,若的值最小,求点坐标;
(3)如图2,在(2)的前提下,直线与直线的交点为,过点作轴的平行线交抛物线于点,若是抛物线上一点,是轴上一点,是否存在以,,,为顶点且为边的平行四边形,若存在,求出点坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),已知二次函数(其中a、b、c是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.
(1)求这个二次函数的解析式;
(2)点D是线段AC上的一点,联结BD,如果,求tan∠DBC的值;
(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中: ①d没有最大值; ②d没有最小值; ③ -1<x<3时,d 随x的增大而增大; ④满足d=5的点P有四个.其中正确结论的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.
(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;
(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',
①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;
②如果AP:PC=5:1,连接DD',且DD'=AD,那么请直接写出点D'到直线BC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=ax2﹣3ax﹣4a的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣3).
(1)求二次函数的表达式及点A、点B的坐标;
(2)若点D在二次函数图象上,且,求点D的横坐标;
(3)将直线BC向下平移,与二次函数图象交于M,N两点(M在N左侧),如图2,过M作ME∥y轴,与直线BC交于点E,过N作NF∥y轴,与直线BC交于点F,当MN+ME的值最大时,求点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com