【题目】如图,在矩形ABCD中,,AD=9,点P是AD边上的一个动点,连接BP,将矩形ABCD沿BP折叠,得到△A1PB,连接A1C,取A1C的三等分点Q(CQ<A1Q),当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为( )
A.πB.C.D.
【答案】D
【解析】
连接AC,BD,相交于点O,过点Q作,交BC于点E,即点E为BC的三等分点,根据平行线分线段成比例得出为定值,可得出点Q的运动轨迹是以点E为圆心,QE为半径的圆弧,通过对点A1运动轨迹的分析求出圆心角,最后根据弧长公式进行求解.
连接AC,BD,相交于点O,过点Q作,交BC于点E,即点E为BC的三等分点,
∵在矩形ABCD中,,AD=9,
∴,即,
∴,
∵将矩形ABCD沿BP折叠,得到△A1PB,
∴,
∴,
当点P运动到点A时,点A1与点A重合,当点P运动到点D时,点A1与A2重合,此时,
∴点Q的运动轨迹是以点E为圆心,QE为半径,圆心角为的圆弧,
∴点Q的运动路径长,
故选D.
科目:初中数学 来源: 题型:
【题目】已知下列命题:①若则②若则③对顶角相等;④等腰三角形的两底角相等.其中原命题和逆命题均为真命题的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,平面直角坐标系中,直线y=﹣x+3交坐标轴与B、C两点,抛物线y=ax2+bx+3经过B、C两点,且交x轴于另一点A(﹣1,0).点D为抛物线在第一象限内的一点,过点D作DQ∥CO,DQ交BC于点P,交x轴于点Q.
(1)求抛物线解析式;
(2)设点P的横坐标为m,在点D的移动过程中,存在∠DCP=∠ACO,求出m值;
(3)在抛物线取点E,在坐标系内取点F,问是否存在以C、B、E、F为顶点且以CB为边的矩形?如果有请求出点E的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.
(1)求证:直线FG是⊙O的切线;
(2)若AC=10,cosA=,求CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校的教室A位于工地O的正西方向,且OA=200m,一台拖拉机从O点出发,以每秒5m的速度沿北偏西53°的方向行驶,设拖拉机的噪声污染半径为130m,则教室A是否在拖拉机的噪声污染范围内?若不在,请说明理由;若在,求出教室A受噪声污染的时间有几秒.(参考数据:sin53°≈0.80,sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学中我们学习了尺规作图,小明发现有些作图只用一种工具就可以完成,你能解决下列问题吗?
(1)请只用无刻度的直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果)在图1中,过点A画一条直线把正五边形ABCDE分成面积相等的两部分;
(2)已知直线l及l外一点A(按下列要求作图,不写画法,保留画图痕迹).
①在图2中,只用圆规在直线l上画出两点B、C,使得点A、B、C是一个等腰三角形的三个顶点;
②在图3中,只用圆规在直线l外画出一点P,使得点A、P所在直线与直线l平行.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察猜想,如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为 ;
(2)问题解决,如图②,在Rt△ABC中,∠ABC=90°,CB=6,AB=3,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;
(3)拓展延伸,如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=6,AB=3,DC=DA,请直接写出BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com