【题目】某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)为120万元,在销售过程中发现,年销售量(万件)与销售单价(元)之间存在着如图所示的一次函数关系.
⑴ 直接写出关于的函数关系式为 .
⑵ 市场管理部门规定,该产品销售单价不得超过100元,该公司销售该种产品当年获利55万元,求当年的销售单价.
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A′,当△A′FC为以FC为直角边的直角三角形时,对应的MA的长为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)如图1,抛物线l与x轴交于A,B两点,与y轴交于点C,CD∥x轴交抛物线于点D,作出抛物线的对称轴EF;
(2)如图2,抛物线l1,l2交于点P且关于直线MN对称,两抛物线分别交x轴于点A,B和点C,D,作出直线MN .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=a(x﹣h)2+k(a≠0)的图象是抛物线,定义一种变换,先作这条抛物线关于原点对称的抛物线y′,再将得到的对称抛物线y′向上平移m(m>0)个单位,得到新的抛物线ym,我们称ym叫做二次函数y=a(x﹣h)2+k(a≠0)的m阶变换.
(1)已知:二次函数y=2(x+2)2+1,它的顶点关于原点的对称点为 ,这个抛物线的2阶变换的表达式为 .
(2)若二次函数M的6阶变换的关系式为y6′=(x﹣1)2+5.
①二次函数M的函数表达式为 .
②若二次函数M的顶点为点A,与x轴相交的两个交点中左侧交点为点B,在抛物线y6′=(x﹣1)2+5上是否存在点P,使点P与直线AB的距离最短,若存在,求出此时点P的坐标.
(3)抛物线y=﹣3x2﹣6x+1的顶点为点A,与y轴交于点B,该抛物线的m阶变换的顶点为点C.若△ABC是以AB为腰的等腰三角形,请直按写出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地特产槟榔芋深受欢迎,某商场以7元/千克收购了3000千克优质槟榔芋,若现在马上出售,每千克可获得利润3元.根据市场调查发现,近段时间内槟榔芋的售价每天上涨0.2元/千克,为了获得更大利润,商家决定先贮藏一段时间后再出售.根据以往经验,这批槟榔芋的贮藏时间不宜超过100天,在贮藏过程中平均每天损耗约10千克.
(1)若商家将这批槟榔芋贮藏x天后一次性出售,请完成下列表格:
每千克槟榔芋售价(单位:元) | 可供出售的槟榔芋重量(单位:千克) | |
现在出售 | 3000 | |
x天后出售 |
(2)将这批槟榔芋贮藏多少天后一次性出售最终可获得最大利润?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“用三角板画圆的切线”的画图过程.
如图1,已知圆上一点A,画过A点的圆的切线.
画法:(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;
(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.
所以直线AD就是过点A的圆的切线.
请回答:该画图的依据是_______________________________________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com