【题目】如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.
(1)求的面积;
(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到0.1米)
(参考数据:,,,,,,)
【答案】(1)560000平方米;(2)565.6米.
【解析】
试题(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;
(2)接AD,作DF⊥AB于F,则DF∥CE.首先求出DF、AF,再在Rt△ADF中求出AD即可.
试题解析:解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°﹣60.7°﹣66.1°=53.2°,∴CE=ACsin53.2°≈1000×0.8=800米,∴S△ABC=ABCE=×1400×800=560000平方米.
(2)连接AD,作DF⊥AB于F,则DF∥CE.∵BD=CD,DF∥CE,∴BF=EF,∴DF=CE=400米.∵AE=ACcos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=EB﹣AE=400米.在Rt△ADF中,AD==400=565.6米.
科目:初中数学 来源: 题型:
【题目】西宁教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表.针对以下六个项目(每人只能选一项):.课外阅读;.家务劳动;.体育锻炼;.学科学习;.社会实践;.其他项目进行调查.根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:
(1)此次抽查的样本容量为____________,请补全条形统计图;
(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?
(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动.请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并按要求完成相应的任务:
莱昂哈德欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.
下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).
∴△MDI∽△ANI.
∴,
∴IAID=IMIN,①
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.
∵DE是⊙O的直径,所以∠DBE=90°.
∵⊙I与AB相切于点F,所以∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所对的圆周角相等),
∴△AIF∽△EDB,
∴.
∴IABD=DEIF②
任务:(1)观察发现:IM=R+d,IN= (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由.
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:在Rt△ABC中,∠C=90°,AC=6cm, BC=8cm,点O为AB中点,点I是△ABC的内心,则OI= cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某茶叶经销商以每千克18元的价格购进一批宁波白茶鲜茶叶加工后出售, 已知加工过程中质量损耗了40%, 该商户对该茶叶试销期间, 销售单价不低于成本单价,且每千克获利不得高于成本单价的60%,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数,且x=35时,y=45;x=42时,y=38.
(1)求一次函数的表达式;
(2)若该商户每天获得利润(不计加工费用)为W元,试写出利润W与销售单价x之间的关系式;销售单价每千克定为多少元时,商户每天可获得最大利润,最大利润是多少元?
(3)若该商户每天获得利润不低于225元,试确定销售单价x的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.
(1)求证:DE=DF;
(2)若∠ABC=30°,∠C=45°,DE=4,求CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一块材料的形状是锐角三角形ABC,边BC长120mm,高AD为80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.
(1)图中与△ABC相似的三角形是哪一个,说明理由;
(2)这个正方形零件的边长为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA,PB分别与⊙O相切于点A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm.
(1)求证:△PAB是等边三角形;
(2)求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com