【题目】如图,在平行四边形中,,,点是的中点,连接,过作于,交于点,点是的中点,连接,过点作的垂线交的延长线于.
(1)若,的长;
(2)求证:.
【答案】(1)DP=;(2)见解析.
【解析】
(1)过P作PM⊥BD于M,根据角平分线的性质得PM=PF,证明Rt△BFP≌R△BMP(HL),得BM=BF=,求出DM=,根据等腰直角三角形的性质可得结论;
(2)连接AP,构建全等三角形,先证明△ADF≌△PBF(ASA),得PF=AF,再证明△APG≌△BHG(ASA),得BH=AP,求出∠ADP=∠DAP=22.5°得AP=DP,从而得结论.
解:(1)如图,过P作PM⊥BD于M,
∵四边形ABCD是平行四边形,
∴CD=AB=BD=4,
∵E是AD的中点,
∴∠DBE=∠ABE,
∵PF⊥AB,PM⊥BD,
∴PF=PM,
∵∠ABD=45°,
∴△BDF是等腰直角三角形,
∴DF=BF=,∠BDF=45°,
∴DM=PM,PD=DM,
在Rt△BFP和Rt△BMP中,
∵PF=PM,BP=BP,
∴Rt△BFP≌Rt△BMP(HL),
∴BM=BF=,
∴DM=,
∴DP=DM=;
(2)连接AP,
∵∠DEP=∠PFB=90°,∠EPD=∠FPB,
∴∠EDP=∠FBP,
又∵DF=BF,∠AFD=∠BFP=90°,
∴△ADF≌△PBF(ASA),
∴PF=AF,
∴∠PAF=45°,
∵BD⊥BH,
∴∠DBH=90°,
∵∠DBF=45°,
∴∠HBG=90°45°=45°,
∴∠PAF=∠HBG,
又∵AG=BG,∠PGA=∠HGB,
∴△APG≌△BHG(ASA),
∴BH=AP,
∵AB=BD,∠ABD=45°,
∴∠DAB=∠ADB=67.5°,
∴∠ADP=∠DAP=22.5°,
∴AP=DP,
∴.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于、两点(在的左侧),与轴交于点,过点的直线:与轴交于点,与抛物线的另一个交点为,己知,,点为抛物线上一动点(不与、重合).
(1)直接写出抛物线和直线的解析式;
(2)当点在直线上方的抛物线上时,连接、,
①当的面积最大时,点的坐标是________;
②当平分时,求线段的长.
(3)设为直线上的点,探究是否存在点,使得以点、,、为顶点的四边形为平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在四边形ABCD中∠A=∠ABC=90°,点E是CD的中点,△ABD与 △EBD关于直线BD对称,,.
(1)求点A和点E之间的距离;
(2)联结AC交BE于点F,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小杰早上从家匀速步行去学校,走到途中发现英语书忘在家里了,随即打电话给爸爸,爸爸立即送英语书去,小杰掉头以原速往回走,几分钟后,路过一家文具店,此时还未遇到爸爸,小杰便在文具店购买了几个笔记本,刚付完款,爸爸刚好赶到,将英语书交给了小杰(途中小杰打电话、小杰的爸爸找英语书的时间忽略不计):然后,爸爸原速返回,同时小杰把速度提高到原来的前往学校,爸爸到家后,过一会小杰才到达学校.两人之间的距离(米)与小杰从家出发的时间(分钟)的函数关系如图所示,则家与学校相距______米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片中,,,点是的中点,点是边上的一个动点,将沿所在直线翻折,得到,连接,,则当是以为腰的等腰三角形时,的长是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )
A. 12厘米 B. 16厘米 C. 20厘米 D. 28厘米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=45°,AB=4cm,将△ABC绕点B按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为 ___________cm2 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕点C顺时针旋转得到△MCN,点D、E分别为AB、MN的中点,若点E刚好落在边BC上,则sin∠DEC=__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com