【题目】如图,已知一次函数y=kx+b与反比例函数的图象交于A(﹣1,m)、B(n,﹣1)两点.
(1)求出A、B两点的坐标;
(2)求出这个一次函数的表达式;
(3)根据图象,写出使一次函数值大于反比例函数值的x的范围.
【答案】(1)A(﹣1,2),B(2,﹣1)(2)y=﹣x+1(3)x<﹣1或0<x<2
【解析】试题分析:(1)根据反比例函数的解析式,代入即可求出A、B的坐标;
(2)利用待定系数法求出一次函数的解析式;
(3)根据图像求使正比例函数值大于反比例函数值的x的范围.
试题解析:(1)把A(﹣1,m),B(n,﹣1)代入y=得:m=,﹣1=,
解得:m=2,n=2,
∴A(﹣1,2),B(2,﹣1);
(2)∵把A、B的坐标代入y=kx+b得:
,
解得:k=﹣1,b=1,
∴这个一次函数的表达式是y=﹣x+1;
(3)∵A(﹣1,2),B(2,﹣1),
∴使一次函数值大于反比例函数值的x的范围是:x<﹣1或0<x<2.
科目:初中数学 来源: 题型:
【题目】以C为直角顶点的两个等腰直角△CAB和△CDG,E为AB的中点,F为DG的中点.
(1)如图1,点A、B分别在边CD,CG上,则EF与AD的数量关系是______________;
(2)如图2,点A、B不在边CD、CG上,(1)中EF与AD的关系还成立吗?请证明你的结论;
(3)如图3,若A、B、G在同一直线上,且A、C、B、F在同一圆上,直接写出△CDG与△CAB面积之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴的负半轴上,且AC=AB,点D的坐标为(0,3),直线l经过点C、D.
(1)求抛物线的表达式;
(2)点P是直线l在第三象限上的点,联结AP,且线段CP是线段CA、CB的比例中项,
求tan∠CPA的值;
(3)在(2)的条件下,联结AM、BM,在直线PM上是否存在点E,使得∠AEM=∠AMB.若存在,求出点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在纸面上有一数轴(如图1),折叠纸面.
(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与 表示的点重合;
(2)若﹣2表示的点与8表示的点重合,回答以下问题:
①16表示的点与 表示的点重合;
②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是 、 .
(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A,B,C三点分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP,垂足为P,则点P的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作一个角等于30°”的尺规作图过程.
作法:如图,(1)作射线AD;
(2)在射线AD上任意取一点O(点O不与点A重合);
(3)以点O为圆心,OA为半径作⊙O,交射线AD于点B;
(4)以点B为圆心,OB为半径作弧,交⊙O于点C;
(5)作射线AC.
∠DAC即为所求作的30°角.
请回答:该尺规作图的依据是_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C是以AB为直径的⊙O上一动点,过点C作⊙O直径CD,过点B作BE⊥CD于点E.已知AB=6cm,设弦AC的长为xcm,B,E两点间的距离为ycm(当点C与点A或点B重合时,y的值为0).
小冬根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小冬的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
经测量m的值是(保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)在(2)的条件下,当函数图象与直线相交时(原点除外),∠BAC的度数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.
(1)求证:△ACD≌△CBF;
(2)AD与CF的关系是 ;
(3)求证:△ACF是等腰三角形;
(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com