分析 根据等腰直角三角形的性质得∠BAC=∠BCA=45°,AC=$\sqrt{2}$AB=$\sqrt{2}$×$\sqrt{2}$=2,再根据平移的性质得∠BAC=∠BCA=∠B′A′C′=∠B′C′A′=45°,AA′等于平移的距离,于是可判断△PA′C′为等腰直角三角形,利用三角形面积公式得到$\frac{1}{2}$PA′2=$\frac{1}{4}$×$\frac{1}{2}$×$\sqrt{2}$×$\sqrt{2}$,解得PA′=$\frac{\sqrt{2}}{2}$,则A′C=$\sqrt{2}$PA′=1,然后计算AC-A′C.
解答 解:∵△ABC为等腰直角三角形,
∴∠BAC=∠BCA=45°,AC=$\sqrt{2}$AB=$\sqrt{2}$×$\sqrt{2}$=2,
∵等腰Rt△ABC沿AC方向平移得到等腰Rt△A′B′C′,
∴∠BAC=∠BCA=∠B′A′C′=∠B′C′A′=45°,AA′等于平移的距离,
∴△PA′C′为等腰直角三角形,
∴S△PA′C′=$\frac{1}{2}$PA′2=$\frac{1}{4}$×$\frac{1}{2}$×$\sqrt{2}$×$\sqrt{2}$,
∴PA′=$\frac{\sqrt{2}}{2}$,
∴A′C=$\sqrt{2}$PA′=1,
∴AA′=AC-A′C=2-1=1,
即它移动的距离AA′为1cm.
故答案为1.
点评 本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了等腰直角三角形的判定与性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com