精英家教网 > 初中数学 > 题目详情

【题目】如图,小芳家的落地窗(线段DE)与公路(直线PQ)互相平行,她每天做完作业后都会在点A处向窗外的公路望去.

1)请在图中画出小芳能看到的那段公路并记为BC

2)小芳很想知道点A与公路之间的距离,于是她想到了一个办法.她测出了邻家小彬在公路BC段上走过的时间为10秒,又测量了点A到窗的距离是4米,且窗DE的长为3米,若小彬步行的平均速度为1.2/秒,请你帮助小芳计算出点A到公路的距离.

【答案】(1)见解析;(2)16m

【解析】

1)连接ADAE并延长,交PQBC,则BC即为所求;

2)过AAGPQG,交DEH,由窗DE和路PQ平行,可得ADE∽△ABC,进而得到BC的长度可根据小彬的速度和时间求出,AHDE已知,据此可求出AG.

解:(1)如图,BC即为所求:

2)过AAGPQG,交DEH

由题意可知:DE //BCDE=3AH=4

,即

AG=16

答:点A到公路的距离是16m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】创客联盟的队员想用3D打印完成一幅边长为6米的正方形作品ABCD,设计图案如图所示(四周阴影是四个全等的矩形,用材料甲打印;中心区是正方形MNPQ,用材料乙打印).在打印厚度保持相同的情况下,两种材料的消耗成本如下表:

材料

价格(元/2

80

50

设矩形的较短边AH的长为x米,打印材料的总费用为y元.

1MQ的长为   米(用含x的代数式表示);

2)求y关于x的函数解析式;

3)当中心区的边长不小于2米时,预备材料的购买资金2800元够用吗?请利用函数的增减性来说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数

(1)将其化成的形式_______________

(2)顶点坐标_________对称轴方程_______________

(3)用五点法画出二次函数的图象;

(4) 时,写出的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:一元二次方程,当时,设两根为,则两根与系数的关系为:.

应用:

1)方程的两实数根分别为,则___________

2)若关于的方程的有两个实数根,求的取值范围;

3)在(2)的条件下,若满足,求实数的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为6EF分别是ABBC边上的点,且∠EDF=45°,将DAE绕点D逆时针旋转90°,得到DCM

(1)求证:EF=MF

(2)AE=2,求FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,平行四边形ABCD中,AB⊥ACAB=1,BC=,对角线ACBD交于O点,将直线AC绕点O顺时针旋转,分别交BCAD于点EF

1)求证:当旋转角为90°时,四边形ABEF是平行四边形;

2)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如能,说明理由并求出此时AC绕点O顺时针旋转的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点A(0)B(0)C(0).DE分别是线段ACCB上的点,CDCE.将△CDE绕点C逆时针旋转一个角度α.

(1)α90°,在旋转过程中当点ADE在同一直线上时,连接ADBE,如图2.求证:ADBE,且ADBE

(2)α360°DE恰好是线段ACCB上的中点,在旋转过程中,当DEAC时,求α的值及点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,中,,以为直径的⊙O于点

于点

1)求证:⊙O的切线;

2)若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了适合不同人群的口味,某商店对苹果味、草莓味、牛奶味的糖果混合组装成甲、乙两种袋装进行销售.甲种每袋装有苹果味、草莓味、牛奶味的糖果各10颗,乙种每袋装有苹果味糖果20颗,草莓味和牛奶味糖果各5.甲、乙两种袋装糖果每袋成本价分别是袋中各类糖果成本之和.已知每颗苹果味的糖果成本价为0.4元,甲种袋装糖果的售价为23.4元,利润率为30%,乙种袋装糖果每袋的利润率为20%.若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装糖果的数量之比是__________.

查看答案和解析>>

同步练习册答案