【题目】如图,在平面直角坐标系中,点A的坐标是(2,1),点B的坐标是(2,0) .作点B关于OA的对称点B′,则点B′的坐标是______.
【答案】()
【解析】
连接AB,AB′,BB′,BB′与OA相交于点F,过B′作B′E⊥x轴,垂足为E,由勾股定理求出OA=,再由三角形面积公式可求出BF=, 由对称性得出BB′=,再证明得B′E=,再由勾股定理求出BE=,从而可求出OE=,故可得答案.
连接AB,AB′,BB′,BB′与OA相交于点F,过B′作B′E⊥x轴,垂足为E,如图所示,
∵点A的坐标是(2,1),点B的坐标是(2,0) ,
∴OB=2,AB=1,AB⊥OB,
∴AB=
∵
∴
∴
∵点B与点B′关于OA的对称,
∴OA⊥BB′, BB′=2BF=,
又∵B′E⊥x轴,AB⊥OB,
∴B′E//AB
∴∠ABB′=∠BB′E,∠B′EB=∠BFA=90°
∴
∴
∴
∴
∴OE=OB-BE=2-=
∴点B′的坐标为(,).
故答案为:(,).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为 2 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形的直角顶点在轴的正半轴上,,将绕顶点顺时针旋转至,使点落在双曲线的图象上,则________,该双曲线的函数解析式为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,AC是⊙O的切线,∠ABC=52°,BC交⊙O于点D,E是AB上一点,延长DE交⊙O于点F.
(Ⅰ)如图①,连接BF,求∠C和∠DFB的大小;
(Ⅱ)如图②,当DB=DE时,求∠OFD的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着通讯技术的迅猛发展,人与人之间的沟通方式变得更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息回答下列问题:
(1)本次调查共调查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;
(2)将条形统计图补充完整;
(3)该校共有1500名学生,请估计该校最喜欢用“微信”沟通的学生有多少名?
(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在矩形ABCD中,AB=6,BC=9,点E是BC边上一动点,连接AE、DE ,作△ECD的外接⊙O,交AD于点F,交AE于点G,连接FG.
(1)求证△AFG∽△AED;
(2)当BE的长为 时,△AFG为等腰三角形;
(3)如图②,若BE=1,求证:AB与⊙O相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为腰作等腰直角三角形DAF,使∠DAF=90°,连接CF.
(1)观察猜想
如图1,当点D在线段BC上时,
①CF与BC的位置关系为 ;
②CF,DC,BC之间的数量关系为 (直接写出结论);
(2)数学思考
如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=2,请求出线段CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,矩形的顶点(1,0),(0,2),点在第一象限,∥轴,若函数=的图象经过矩形的对角线的交点,则的值为( )
A.4B.5C.8D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习“轴对称现象”内容时,老师让同学们寻找身边的轴对称图形,小明利用手中的一副三角尺和一个量角器(如图所示)进行探究.
(1)小明在这三件文具中任取一件,结果是轴对称图形的概率是_________;(取三件中任意一件的可能性相同)
(2)小明发现在、两把三角尺中各选一个角拼在一起(无重叠无缝隙)会得到一个更大的角,若每个角选取的可能性相同,请用画树状图或列表的方法说明拼成的角是钝角的概率是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com