【题目】如图,已知的顶点,,点在轴的正半轴上,在轴的正半轴上.连接,过点作,垂足为点,交于点,则点的坐标为( )
A.B.
C.D.
【答案】D
【解析】
设AC与OD交于点G,由平行四边形的性质得出AB∥CD,AB=CD,则CD⊥OD,由题意的OA=4,AB=CD=8,OD=3,则OB=AB-OA=4,证△OAG∽△DCG,求出OG=DG=OD=1,证,求出BF=2,即可得出答案.
解:设AC与OD交于点G,如图所示:
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵AB⊥OD,
∴CD⊥OD,
∵A(-4,0),C(8,3),
∴OA=4,AB=CD=8,OD=3,
∴OB=AB-OA=4,
∵AB∥CD,
∴,
∴
∴OG=DG=OD=1,
∵BE⊥CD,CD⊥OD,
∴OD∥BE, ∴,
∴ ,即
解得:BF=2,
∴点F的坐标为(4,2),
故选
科目:初中数学 来源: 题型:
【题目】如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设EFG的面积为y,AE的长为x,则y关于x的函数图象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.
(1)试判断DE与⊙O的位置关系,并说明理由;
(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,AD是BC边上的中线,点E为AD的中点,过点A作交BE的延长线于点F,连接CF.
(1)求证:;
(2)连接DF,当 度时,四边形ABDF为菱形?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解
(1)如图1,在中,,,,为边上的点,且,若,,求的长.
思考如下:注意到条件中有,,不妨把绕点顺时针旋转,得到,连接,易证,从而将线段,,集中在了中,因为的度数是________;,所以的长为 ;
类比探究
(2)如图2,在中,,,,为边上的点,且,,,求的长;
拓展应用
(3)如图3,是正方形内一点,,是边上一点,且,若,请直接写出当取最小值时的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察以下等式:
第1个等式:23-22=13+2×1+1;
第2个等式:33-32=23+3×2+22;
第3个等式:43-42=33+4×3+32;
……
按照以上规律,解决下列问题:
(1)写出第4个等式:__________________;
(2)写出你猜想的第n个等式(用含n的等式表示),并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com