精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象相交于A(﹣1n)、B2,﹣1)两点,与y轴相交于点CBD垂直于y轴于点D

1)求一次函数与反比例函数的表达式;

2)求△ABD的面积;

3)若Mxy)、Nxy)是反比例函数y上的两点,当xx0时,直接写出yy的大小关系

【答案】1y=﹣x+1y=﹣;(2SADB3;(3y2y1

【解析】

(1)把B点坐标代入ym=﹣2,则反比例函数解析式为y=﹣,再利用反比例函数解析式确定A点坐标;然后利用待定系数法求出一次函数解析式;

2)利用一次函数解析式确定C(﹣40),根据三角形面积公式,利用SAOBSAOC+SBOC进行计算;

3)根据反比例函数的性质求解.

1)把B2,﹣1)代入ym(﹣1)=﹣2

∴反比例函数解析式为y=﹣

A(﹣1n)代入y=﹣得﹣n=﹣2,解得n2

A(﹣12),B2,﹣1)分别代入ykx+b

解得

∴一次函数解析式为y=﹣x+1

y0时,﹣x+10,解得x1,则C10

SADBSADCSBDC×2×1+×2×23

3y2y1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于⊙OA的中点,AEACA,与⊙OCB的延长线交于点FE,且.

(1)求证:△ADC∽△EBA

(2)如果AB8CD5,求tan∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了节省材料,某水产养殖户利用本库的岸堤(岸堤足够长)为一边,用总长为160m的围网在水库中围成了如图所示的三块矩形区域网箱,而且这三块矩形区域的面积相等,设BE的长度为xm,矩形区域ABCD的面积为ym2

1)则AE   mBC   m;(用含字母x的代数式表示)

2)求矩形区域ABCD的面积y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABO直径,ACO的切线,BCO于点D(如图1).

(1)若AB=2,∠B=30°,求CD的长;

(2) 取AC的中点E,连结DE(如图2),求证:DEO相切.

【答案】(1);(2)见解析

【解析】分析:连接AD ,根据AC是⊙O的切线,AB是⊙O的直径,得到∠CAB=ADB=90°,根据∠B=30°,解直角三角形求得的长度.

连接ODAD.根据DE=CE=EAEDA=EAD. 根据OD=OA,得到

ODA=DAO,得到∠EDA+ODA=EAD+DAO.得到∠EDO=90°即可.

详解:(1)如图,连接AD ,

AC是⊙O的切线,AB是⊙O的直径,

∴∠CAB=ADB=90°,

ΔCABCAD均是直角三角形.

∴∠CAD=B=30°.

RtΔCAB中,AC=ABtan30°=

∴在RtΔCAD中,CD=ACsin30°=

(2)如图,连接ODAD.

AC是⊙O的切线,AB是⊙O的直径,

∴∠CAB=ADB=ADC=90°,

又∵EAC中点,

DE=CE=EA, 

∴∠EDA=EAD.

OD=OA

∴∠ODA=DAO

∴∠EDA+ODA=EAD+DAO.

即:∠EDO=EAO=90°. 

又点D在⊙O上,因此DE与⊙O相切.

点睛:考查解直角三角形,圆周角定理,切线的判定与性质等,属于圆的综合题,比较基础.注意切线的证明方法,是高频考点.

型】解答
束】
21

【题目】课外活动时间,甲、乙、丙、丁4名同学相约进行羽毛球比赛.

(1)如果将4名同学随机分成两组进行对打,求恰好选中甲乙两人对打的概率;

(2)如果确定由丁担任裁判,用“手心、手背”的方法在另三人中竞选两人进行比赛.竞选规则是:三人同时伸出“手心”或“手背”中的一种手势,如果恰好只有两人伸出的手势相同,那么这两人上场,否则重新竞选.这三人伸出“手心”或“手背”都是随机的,求一次竞选就能确定甲、乙进行比赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙OCD相切于点D,点B在⊙O上,连接OB

1)求证:DE=OE

2)若CDAB,求证:BC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.

(1)求这个二次函数的表达式;

(2)P是直线BC下方抛物线上的一动点,求BCP面积的最大值;

(3)直线x=m分别交直线BC和抛物线于点M,N,当BMN是等腰三角形时,直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c过等腰RtOABAB两点,点B在点A的右侧,直角顶点A03).

1)求bc的值.

2PAB上方抛物线上的一点,作PQABOB于点Q,连接AP,是否存在点P,使四边形APQO是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的个数(

①位似图形都相似:

②两个等边三角形一定是位似图形;

③两个相似多边形的面积比为5:9.则周长的比为5:9

④两个大小不相等的圆一定是位似图形.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示的是嘉淇爸爸给嘉淇出的一道题,如图2所示的是嘉淇对该题的解答.她所写的结论中,正确的个数是( )

A.6B.5C.4D.3

查看答案和解析>>

同步练习册答案