【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶,设慢车行驶的时间x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象回答:
(1)甲、乙两地之间的距离为 ;
(2)两车同时出发后 h相遇;
(3)慢车的速度为 千米/小时;快车的速度为 千米/小时;
(4)线段CD表示的实际意义是 .
【答案】(1) 900km;(2)4;(3) 75,150;(4) 快车到达乙地后,慢车继续行驶到甲地.
【解析】
(1)根据函数图象中的数据可以得到甲乙两地之间的距离;
(2)根据函数图象中的数据可以得到两车同时出发多长时间相遇;
(3)根据函数图象中的数据可以计算出快车和慢车的速度;
(4)根据题意可以写出线段CD表示的实际意义.
(1)由图象可得,
甲、乙两地之间的距离为900km,
故答案为:900km;
(2)由图象可得,
两车同时出发后4h相遇,
故答案为:4;
(3)慢车的速度为:900÷12=75km/h,
快车的速度为:900÷4﹣75=150km/h,
故答案为:75,150;
(4)线段CD表示的实际意义是快车到达乙地后,慢车继续行驶到甲地,
故答案为:快车到达乙地后,慢车继续行驶到甲地.
科目:初中数学 来源: 题型:
【题目】某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班级的各5名学生的成绩,它们分别是:
九(1)班:96,92,94,97,96
九(2)班:90,98,97,98,92
通过数据分析,列表如下:
(1)
(2)计算两个班级所抽取的学生艺术成绩的方差,判断哪个班学生艺术成绩比较稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知在平面直角坐标系中,△ABC的位置如图所示:
(1)请写出点A、B、C三点的坐标.
(2)将△ABC向右平移6个单位,再向上平移2个单位,请在图中作出平移后的△A'B'C',并写出它们的坐标:A'( ),B'( ),C'( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于两点和与轴交于点动点沿的边以每秒个单位长度的速度由起点向终点运动,过点作轴的垂线,交的另一边于点将沿折叠,使点落在点处,设点的运动时间为秒.
(1)求抛物线的解析式;
(2)N为抛物线上的点(点不与点重合)且满足直接写出点的坐标;
(3)是否存在某一时刻,使的面积最大,若存在,求出的值和最大面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)2﹣2+()0+(﹣0.2)2014×52014
(2)(2a3b)3(﹣8ab2)÷(﹣4a4b3)
(3)(2a+1)2﹣(2a+1)(﹣1+2a)
(4)20192﹣2018×2020(运用整式乘法公式进行计算)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的表达式;
(2)直接写出点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;
(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)求证:AE=EF.
(2)(探究1)变特殊为一般:若题中“点E是边BC的中点”变为“点E是BC边上任意一点”,则上述结论是否仍然成立?(填“是”或“否”).
(3)(探究2)在探究1的前提下,若题中结论“AE=EF”与条件“CF是正方形外角的平分线”互换,则命题是否还成立?请给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣2x+c的对称轴为直线x=﹣1,顶点为A,与y轴正半轴交点为B,且△ABO的面积为1.
(1)求抛物线的表达式;
(2)若点P在x轴上,且PA=PB,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com