【题目】几何探究:
(问题发现)
(1)如图1所示,△ABC和△ADE是有公共顶点的等边三角形,BD、CE的关系是_______(选填“相等”或“不相等”);(请直接写出答案)
(类比探究)
(2)如图2所示,△ABC和△ADE是有公共顶点的含有角的直角三角形,(1)中的结论还成立吗?请说明理由;
(拓展延伸)
(3)如图3所示,△ADE和△ABC是有公共顶点且相似比为1 : 2的两个等腰直角三角形,将△ADE绕点A自由旋转,若,当B、D、E三点共线时,直接写出BD的长.
【答案】(1)相等;(2)不成立,理由见解析;(3)或.
【解析】
(1)证明△ABD≌△ACE(SAS),即可得出;
(2)当在Rt△ADE和Rt△ABC中,,证明△ABD∽△ACE,求出BD与CE的比例;
(3)分两种情况求出BD的长即可.
(1)相等;
提示:如图4所示.
∵△ADE和△ABC均为等边三角形,
∴
∴
∴
在△ABD和△ACE中,
∴△ABD≌△ACE(SAS)
∴.
(2)不成立;
理由如下:如图5所示.
在Rt△ADE和Rt△ABC中,
∵
∴
∴
∵
∴△ABD∽△ACE
∴
∴
故(1)中的结论不成立;
(3)或.
提示:分为两种情况:
①如图6所示.
易证:△ABD≌△ACE(SAS)
∴
∴
∴
由题意可知:
设,则
在Rt△BCE中,由勾股定理得:
∴
解之得:(舍去)
∴;
②如图7所示.
易证:△ABD≌△ACE(SAS),
设,则
在Rt△BCE中,由勾股定理得:
∴
解之得:(舍去)
∴.
综上所述,或.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC=60°,M为AD的中点,连接BM,交AC于E,在CB上取一点F,使得CF=AE,连接AF,交BM于G,连接CG.
(1)求∠BGF的度数;
(2)求的值;
(3)求证:BG⊥CG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为直径,作的内接正六边形,甲、乙两人的作法分别如下:
甲:1.作的中垂线,交圆于两点;2.作的中垂线,交圆于两点;3.顺次连接六个点,六边形即为所求;
乙:1.以为圆心,长为半径作弧,交圆于两点;2.以为圆心,长为半径作弧,交圆于两点;3.顺次连接六个点,六边形即为所求;
对于甲、乙两人的作法,可判断( )
A.甲对,乙不对B.甲不对,乙对
C.两人都不对D.两人都对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图放置的两个正方形,大正方形边长为,小正方形边长为(),在边上,且,连接,,交于点,将绕点旋转至,将绕点旋转至,给出以下五个结论:①;②;③;④;⑤四点共圆,其中正确的序号为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,菱形ABCD如图所示,,点D在线段AB的垂直平分线上,若菱形ABCD绕点O逆时针旋转,旋转速度为每秒,则第70秒时点D的对应坐标为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与双曲线的图象相交于点A和点C,点A的坐标为,点C的坐标为.
(1)求的值和反比例函数的解析式;
(2)求的值,并写出在轴右侧,使得反比例函数大于一次函数的值的的取值范围;
(3)如图,直线与轴相交于点B,在轴上存在点D,使得是以BC为腰的等腰三角形,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD;请证明你的结论.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41, =1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).
请根据图中信息解答下列问题:
(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)
(2)求扇形统计图中表示“满意”的扇形的圆心角度数;
(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com