精英家教网 > 初中数学 > 题目详情
9.如图所示,已知∠AOB,点P在OA上.
①请以P为顶点,PA为一边作∠APC=∠O(不写作法,但必须保留作图痕迹);
②在你完成①后的图中,PC与OB平行吗?为什么?

分析 ①以点O为圆心,以任意长为半径画弧,交∠AOB的两边于两点;以点P为圆心,刚才的半径为半径,交射线PA于一点,以这点为圆心,∠AOB两边上两点的距离为半径画弧,交前弧于一点,过这点作射线PC,∠APC就是所求的角.
②PC与OB平行,根据平行线的判定定理即可判定即可.

解答 解:①如图所示:

②PC与OB平行,
∵∠O=∠CPA,
∴PC=OB.

点评 本题考查了作一个角等于已知角即可求解,和平行线的判定定理,正确记忆基本作图的方法是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.已知三角形中有一个角为30度,有两条边长为8cm和6$\sqrt{3}$cm,则这个三角形的第三条边长是9+$\sqrt{37}$、9-$\sqrt{37}$、2$\sqrt{7}$、4$\sqrt{3}$+2$\sqrt{23}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.四个规模不同的滑梯A,B,C,D,它们的滑板长(平直的)分别为300m,250m,200m,200m;滑板与地面所成的角度分别为30°,45°,45°,60°,则关于四个滑梯的高度正确说法(  )
A.A的最高B.B的最高C.C的最高D.D的最高

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,已知在Rt△ABC中,∠C=90°,AC=4,tanA=$\frac{1}{2}$,则AB的长是(  )
A.2B.8C.2$\sqrt{5}$D.4$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在直角梯形ABCD中AD∥BC.∠ABC=90°DC与以AB为直径的半圆⊙O相切,⊙O的半径为r,在下列结论:①OD⊥OC;②AD+BC=DC; ③S△AOD+S△BOC=S△DOC; ④AD•BC=r2中正确的个数有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,有下列结论:
①AM=MN;②MP=$\frac{1}{2}$BD;③BN+DQ=NQ;④$\frac{AB+BN}{BM}$为定值.
(1)其中一定成立的是①②③④,
(2)请对正确的命题加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=62°,则∠BOC的度数为(  )
A.60°B.62°C.31°D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:7-|3+$\sqrt{10}$|-|$\sqrt{10}$-$\sqrt{11}$|-|$\sqrt{11}$-$\sqrt{12}$|-|4-$\sqrt{12}$|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知A(a,0),B(0,b)分别为两坐标轴上的点,且a、b满足a2+b2-12a-12b+72=0,OC:OA=1:3.
(1)求A、B、C三点的坐标;
(2)若点D(1,0),过点D的直线分别交AB、BC于E、F两点,设E、F两点的横坐标分别为xE、xF,当BD平分△BEF的面积时,求xE+xF的值;
(3)如图2,若M(2,4),点P是x轴上A点右侧一动点,AH⊥PM于点H,在BM上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否发生改变?若不变,请求其值,若改变,请说明理由.

查看答案和解析>>

同步练习册答案