精英家教网 > 初中数学 > 题目详情
如图,已知AB=AD,那么添加下列一个条件后,能用SAS判定△ABC≌△ADC的是
 
考点:全等三角形的判定
专题:
分析:AB=AD,公共边AC=AC,要利用SAS判定△ABC≌△ADC,需加条件∠BAC=∠DAC.
解答:解:添加条件∠BAC=∠DAC,
在△ABC和△ADC中,
AB=AD
∠BAC=∠DAC
AC=AC

∴△ABC≌△ADC(SAS).
故答案为:∠BAC=∠DAC.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用一个平面去截一个棱柱,截面的边数最多是8,则这个棱柱有
 
条棱.

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC中,BD平分∠ABC,E为BD上一点,EF⊥AC于F,∠A=40°,∠C=78°,则∠DEF的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得能根据“SAS”判定△BDF≌△CDE,你添加的条件是
 
.(不添加辅助线)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,∠BAC=120°,D为BC中点,DE⊥AB于E,AD=4,求线段BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程x2-mx+3=0的两个实数根相等,那么m=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

关于x的方程(k-2)x2-2(k-1)x+k+1=0有实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

把下列各数在数轴上表示出来,并用“<”将它们连接起来.
3,-1.5,-3
1
2
,0,2.5,-4.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为
 

查看答案和解析>>

同步练习册答案