精英家教网 > 初中数学 > 题目详情

【题目】将立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,可以得到其表面展开图的平面图形.

1)以下两个方格图中的阴影部分能表示立方体表面展开图的是   (填AB).

2)在以下方格图中,画一个与(1)中呈现的阴影部分不相似(包括不全等)的立方体表面展开图.(用阴影表示)

3)如图中的实线是立方体纸盒的剪裁线,请将其表面展开图画在右图的方格图中.(用阴影表示)

【答案】1A;(2)见解析;(3)见解析

【解析】

1)有字格的展开图都不能围成正方体,据此可排除B,从而得出答案;

2)可利用“132”作图(答案不唯一);

3)根据裁剪线裁剪,再展开.

解:(1)两个方格图中的阴影部分能表示立方体表面展开图的是A

故答案为:A

2)立方体表面展开图如图所示:

3)将其表面展开图画在方格图中如图所示:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数的图象的顶点在第一象限,且过点(-1,0),设,则的取值范围为(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据道路交通法规规定:普通桥梁一般限速40km/h.为了安全,交通部门在桥头竖立警示牌:“请勿超速”,并监测摄像系统监控,如图,在某直线公路L路桥段BC内限速40km/h,为了检测车辆是否超速,在距离公路L500米旁的A处设立了观测点,从观测点A测得一小车从点B到达点C行驶了30秒钟,已知∠ABL=45°,∠ACL=30°,此车超速了吗?请说明理由.(参考数据:=1.41=1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC90°ABBC,三角形的顶点在相互平行的三条直线l1l2l3上,且l1l2之间的距离为2l2l3之间的距离为3BCl2D点.

1)求AB的长.

2)求sinBAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰直角△ABC,∠C=90°AC=2D为边AC上一动点,连结BD,在射线BD上取一点E使BEBD=AB2.若点DA运动到C,则点E运动的路径长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国北斗导航装备的不断更新,极大方便人们的出行.某中学组织学生利用导航到C地进行社会实践活动,到达A地时,发现C地恰好在 A地正北方向,导航显示路线应沿北偏东60°方向走到B地,再沿北偏西37°方向走才能到达C地.如图所示,已知AB两地相距6千米,则AC两地的距离为(  )(参考数据sin53°≈0.80cos53°≈0.60)

A.12千米B.(3+4)千米C.(3+5)千米D.(124)千米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题发现

小明在学习鲁教版八年级上册97页例4,受到启发进行如下数学实验操作:

如图1,取一个锐角为45°的三角尺,把锐角顶点放在正方形ABCD的顶点D处,将三角尺绕点D旋转一个角度,使三角尺的直角边与斜边分别交边AB,BC于点E和点F,连接FE,在绕点D旋转过程中,发现线段AE,EF,CF满足EF=AE+CF的数量关系,但是不会进行证明,数学张老师给他如下的提示:ADE绕点D逆时针旋转90°DCE’的位置,小明画旋转后的图形,利用全等的知识证明了出来.你根据上面的提示画出旋转后的图形,并将上面的结论进行证明.

问题探究

小明的探究引发了老师的兴趣,老师将三角尺绕点D旋转到如图2的位置,三角尺的直角边与斜边分别交边AB,BC的延长线于点E和点F,老师问题小明此时AE,EF,CF满足什么数量关系,小明思考后说出了正确的结论.请同学们直接写出正确结论(不用写出证明过程).

拓展延伸

张老师让小明利用上面探究积累的学习经验,解答下面的问题:

如图3已知正方形ABCD,E在边AB,F在边BC,且∠EDF=45°,CD=6,AE=2,CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实美丽抚顺的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.

(1)甲、乙两工程队每天能改造道路的长度分别是多少米?

(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC内接于圆,点D在劣弧上,ADBCDCABQAC中点,点D与点P关于点Q对称.

1)求证:△PAD∽△ABC

2)求证:点BPD在一条直线上.

3)如图2,记∠PABα,∠PCBβ,∠ABCθ,请用含αβ的代数式表示θ

4)如图3,设EF分别为ABBC的中点,EFBD于点H,求的值.

查看答案和解析>>

同步练习册答案