精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的直径是AB=12cm,AMBN是它的两条切线,DE与⊙O相切于点E,并与AMBN分别相交于DC两点,设AD=x,BC=y,则yx的函数解析式为______.

【答案】y=

【解析】

作出辅助线构造直角三角形,运用勾股定理及切线的性质定理即可求出y关于x的函数解析式.

如图,过点DDFBC于点F

ADBC是它的两条切线,

∠OAD=OBF=90°

DFBC

∴四边形ABFD为矩形,

DF=AB=12cmBF=AD

ADBCDC分别是圆O的切线,

∴DF=DA=x,CE=CB=yCF=y-x

∴DC=x+y

由勾股定理得DC2=DF2+CF2

即(x+y2=(y-x)2+122,

整理得xy=36

y=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2>4ac;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③当y>0时,x的取值范围是﹣1<x≤3;④当x>0时,y随x增大而增大.⑤a>-c上述五个结论中正确的有_________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点DDFAC于点F.

(1)若⊙O的半径为3,CDF=15°,求阴影部分的面积;

(2)求证:DF是⊙O的切线;

(3)求证:∠EDF=DAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,二次函数的图像与轴交于两点(点的左侧),顶点为,连接并延长交轴于点,若.

1)求二次函数的表达式;

2)在轴上方有一点,且,连接并延长交抛物线于点,求点的坐标;

3)如图②,折叠△,使点落在线段上的点处,折痕为.若△ 有一条边与轴垂直,直接写出此时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校随机抽取九年级部分同学接受一次内容为最适合自己的考前减压方式的调查活动,学校收集整理数据后,将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:

九年级接受调查的同学共有多少名,并补全条形统计图;

九年级共有500名学生,请你估计该校九年级听音乐减压的学生有多少名;

若喜欢交流谈心5名同学中有三名男生和两名女生,心理老师想从5名同学中任选两名同学进行交流,请用画树状图或列表的方法求同时选出的两名同学都是女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.如图,⊙OABC的外接圆,直线DE是⊙O的切线,点A为切点,DEBC

1)如图1.求证:AB=AC

2)如图2.P是弧AB上一动点,连接PAPB,作PFPB,垂足为点P,PF交⊙O于点F, 求证:∠BAC=2APF

3)如图3.在(2)的条件下,连接PCPA=PB=PC=,求线段PF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,,延长DA于点E,使得,连接BE

求证:四边形AEBC是矩形;

过点EAB的垂线分别交ABAC于点FG,连接CEAB于点O,连接OG,若,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,,点E在射线DA上,连接BE,将线段BE绕点E旋转后,点B恰好落在射线DB此时点B的对应点为点,则线段DF的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校要求200名学生进行社会调查,每人必须完成份报告,调查结束后随机抽查了20名学生每人完成报告的份数,并分为四类,A3份;B4份;C5份;D6份,将各类的人数绘制成扇形图如图和尚未完整的条形图如图,回答下列问题:

请将条形统计图2补充完整;

写出这20名学生每天完成报告份数的众数______份和中位数______份;

在求出20名学生每人完成报告份数的平均数时,小明是这样分析的:

第一步:求平均数的公式是

第二步:在该问题中,

第三步:(份);

小明的分析对不对?如果对,请说明理由,如果不对,请求出正确结果.

查看答案和解析>>

同步练习册答案