【题目】如图,已知二次函数()的图象与轴交于点和点,与交轴于点,表示当自变量为时的函数值,对于任意实数,均有.
(1)求该二次函数的解析式;
(2)点是线段上的动点,过点作,交于点,连接.当的面积最大时,求点的坐标;
(3)若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为.是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)存在,点的坐标为:或或或
【解析】
(1)根据题意即可求出抛物线的对称轴,然后利用抛物线的对称性即可求出点A的坐标,设二次函数的解析式为,将点C的坐标代入即可求出二次函数的解析式,化为一般式即可;
(2)设点的坐标为,过点作轴于点,根据点A、B、C的坐标即可求出OA、OB、OC、BQ和AB,根据相似三角形的判定及性质,即可用含m的式子表示EG,然后根据即可求出与m的二次函数关系式,根据二次函数求最值即可;
(3)根据等腰三角形腰的情况分类讨论,分别在每种情况下求出点F的坐标,然后根据点P和点F的纵坐标相等,将点P的纵坐标代入二次函数解析式中即可求出点P的横坐标.
解:(1)当与时函数值相等,可知抛物线的对称轴为,
由点的坐标可求得点的坐标为
设二次函数的解析式为
将点代入,得
所以,二次函数的解析式为.
(2)设点的坐标为,过点作轴于点,如图
∵(4,0),, ,
∴OA=4,OB=2,OC=4, BQ=m+2
∴AB=6
∵
∴
∵
∴
∴,即,
∴
∴
又∵
∴当时,有最大值3,此时
(3)存在.
①若,如下图所示
则,
∴∠DOF=∠DFO,∠DAF=∠DFA
∴∠DOF+∠DAF=∠DFO+∠DFA=∠OFA
∴是直角三角形,OF⊥AC
∵OA=OC=4
∴点F为AC的中点
∴根据中点坐标公式:点的坐标为
∵直线l∥x轴
∴点P的纵坐标=点F的纵坐标=2,将y=2代入二次函数解析式中,得
,
得,
此时点的坐标为:或
②若,过点作轴于点
由等腰三角形的性质得:,
∴,
在等腰直角三角形AOC中,∠OAC=45°
∴△AMF也是等腰直角三角形
∴FM=AM=3
∴
∵直线l∥x轴
∴点P的纵坐标=点F的纵坐标=3,将y=3代入二次函数解析式中,得
由,得,
此时,点的坐标为:或
③若,
∵,且
∴
∴点到的距离为
而
∴上不存在点使得
此时,不存在这样的直线,使得是等腰三角形
综上,存在这样的直线,使得是等腰三角形,所求点的坐标为:或或或
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,过点O的抛物线y=ax2﹣7ax与x轴正半轴交于点A,点D为第三象限抛物线上一点,AD交y轴于点B,OA=2OB,点D纵坐标为﹣4.
(1)如图1,求抛物线的解析式;
(2)如图2,点P为第一象限抛物线上一点,过点P作PE⊥x轴,垂足为E,PD交y轴于点C,连接CE,求证:CE∥AD;
(3)如图3,在(2)的条件下,将线段EC绕点E顺时针旋转90°,使点C恰好落在抛物线的点F处,连接OP,点Q为线段OP上一点,若∠FQC=135°,求点Q坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为、、、四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:
(1)_______,_______,_________;
(2)请将条形统计图补充完整,并计算表示等次的扇形所对的圆心角的度数为_______;
(3)学校决定从等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时波选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】发现任意三个连续的整数中,最大数与最小数这两个数的平方差是4的倍数;
验证:(1) 的结果是4的几倍?
(2)设三个连续的整数中间的一个为n,计算最大数与最小数这两个数的平方差,并说明它是4的倍数;
延伸:说明任意三个连续的奇数中,最大的数与最小的数这两个数的平方差是8的倍数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学著作,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出了圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径长为( )
A.26寸B.25寸C.13寸D.寸
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A非常了解”“B了解”“C基本了解”三个等级,并根据调查结果制作了如下图所示两幅不完整的统计图.
(1)这次调查的市民人数为 , , ;
(2)补全条形统计图;
(3)若该市约有市民1000000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A非常了解”的程度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com