【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的长度.
【答案】(1)见解析;(2)2cm.
【解析】
(1)结合条件利用直角三角形的性质可得∠BCE=∠CAD,利用AAS和证得全等;
(2)由全等三角形的性质可求得CD=BE,利用线段的和差可求得BE的长度.
(1)证明:∵BE⊥CE于E,AD⊥CE于D,
∴∠BEC=∠CDA=90°,
在Rt△BEC中,∠BCE+∠CBE=90°,
在Rt△BCA中,∠BCE+∠ACD=90°,
∴∠CBE=∠ACD,
在△BEC和△CDA中,
∴△BEC≌△CDA(AAS)
(2)由(1)知,△ADC≌△CEB,
则AD=CE=5cm,CD=BE.
∵CD=CE-DE,
∴BE=AD-DE=5-3=2(cm),
即BE的长度是2cm.
科目:初中数学 来源: 题型:
【题目】如图,已知,两点在数轴上,点表示的数为-10,点到点的距离是点到点距离的3倍,点以每秒3个单位长度的速度从点向右运动.点以每秒2个单位长度的速度从点向右运动(点、同时出发)
(1)数轴上点对应的数是______.
(2)经过几秒,点、点分别到原点的距离相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为打造书香校园,计划购进甲乙两种规格的书柜放置新购置的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个(其中乙种书柜的数量不少于甲种书柜的数量的).设该校计划购进甲种书柜m个,资金总额为W元.求W与m的函数关系式,并请你为该校设计资金最少的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某慈善组织租用甲、乙两种货车共辆,把蔬菜吨,水果吨,全部运到灾区已知辆甲种货车同时可装蔬菜吨,水果吨;一辆乙种货车同时可装蔬菜吨,水果吨.
(1)若将这批货物一次性运到灾区,请写出具体的租车方案?
(2)若甲种货车每辆需付燃油费元,乙种货车每辆需付燃油费元,则应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.
(1)当点F运动到边BC的中点时,求点E的坐标;
(2)连接EF,求∠EFC的正切值;
(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将连续的偶数2,4,6,8,…,排成如下表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:
(1)十字框中的五个数的和等于 .
(2)若将十字框上下左右移动,可框住另外的五个数,设中间的数为,用代数式表示十字框中的五个数的和是 .
(3)在移动十字框的过程中,若框住的五个数的和等于2020,这五个数从小到大依次是: , , , , ,……
(4)框住的五个数的和能等于2019吗?
答: (回答“能”或“不能”)
理由是:_______________________________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠ACB=90°,AC=BC,直线l经过点C,BD⊥l,AE⊥l,,垂足分别为D、E.
(1)当A、B在直线l同侧时,如图1,
①证明:△AEC≌△CDB;
②若AE=3,BD=4,计算△ACB的面积.(提示:间接求)
(2)当A. B在直线l两侧时,如图2,若AE=3,BD=4,连接AD,BE直接写出梯形ADBE的面积___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且DE=2.将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,则BG=___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
对他们的训练成绩作如下分析,其中说法正确的是( )
A. 他们训练成绩的平均数相同 B. 他们训练成绩的中位数不同
C. 他们训练成绩的众数不同 D. 他们训练成绩的方差不同
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com