12£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=-x2+bx+c¾­¹ýA£¨0£¬1£©¡¢B£¨4£¬3£©Á½µã£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Çótan¡ÏABOµÄÖµ£»
£¨3£©¹ýµãB×÷BC¡ÍxÖᣬ´¹×ãΪC£¬µãMÊÇÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬Ö±ÏßMNƽÐÐÓÚyÖá½»Ö±ÏßABÓÚN£¬Èç¹ûM¡¢N¡¢B¡¢CΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬ÇëÖ±½Óд³öMµãµÄºá×ø±ê£»
£¨4£©ÒÑÖªµãEΪÅ×ÎïÏßÉÏλÓÚµÚ¶þÏóÏÞÄÚÈÎÒ»µã£¬ÇÒEµãºá×ø±êΪm£¬×÷±ß³¤Îª10µÄÕý·½ÐÎEFGH£¬Ê¹EF¡ÎxÖᣬµãGÔÚµãEµÄÓÒÉÏ·½£¬ÄÇô£¬¶ÔÓÚ´óÓÚ»òµÈÓÚ-1µÄÈÎÒâʵÊým£¬FG±ßÓë¹ýA¡¢BÁ½µãµÄÖ±Ïß¶¼Óн»µã£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©°ÑA¡¢BÁ½µã×ø±ê´úÈë½âÎöʽ¼´¿É½â¾ö£®
£¨2£©Èçͼ×÷AM¡ÍOB´¹×ãΪM£¬ÀûÓÃtan¡ÏABO=$\frac{AM}{BM}$½â¾ö£®
£¨3£©¸ù¾ÝMN=BC£¬Áгö·½³Ì¼´¿É½â¾ö£®
£¨4£©ÈçͼֻҪÅжÏGy£¾Ny¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ$\left\{\begin{array}{l}{c=1}\\{-16+4b+c=3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{b=\frac{9}{2}}\\{c=1}\end{array}\right.$£¬ËùÒÔÅ×ÎïÏß½âÎöʽΪy=-x2+$\frac{9}{2}x$+1£®
£¨2£©Èçͼ×÷AM¡ÍOB´¹×ãΪM£¬¡ßÖ±ÏßABµÄ½âÎöʽΪy=$\frac{1}{2}$x+1£¬Ö±ÏßOBµÄ½âÎöʽΪy=$\frac{3}{4}$x£¬
¡àÖ±ÏßAMΪy=-2x+1£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{3}{4}x}\\{y=-2x+1}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=\frac{4}{11}}\\{y=\frac{3}{11}}\end{array}\right.$£¬
¡àÖ±ÏßµãM×ø±ê£¨$\frac{4}{11}$£¬$\frac{3}{11}$£©
¡àAM=$\frac{4\sqrt{5}}{11}$   BM=$\frac{50}{11}$
¡àtan¡ÏABO=$\frac{AM}{BM}$=$\frac{2\sqrt{5}}{25}$£®
£¨3£©ÉèµãM×ø±êΪ£¨m£¬-m2+$\frac{9}{2}$m+1£©£¬µ±MN¡ÎBC£¬MN=BCʱ£¬M¡¢N¡¢B¡¢CΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬
¡à|-m2+$\frac{9}{2}$m+1-£¨$\frac{1}{2}$m+1£©|=3£¬
ÕûÀíµÃm2-4m+3=0»òm2-4m-3=0£¬
½âµÃm=1»ò3»ò2+$\sqrt{7}$»ò2-$\sqrt{7}$£®
£¨4£©ÈçͼÉèFGÓëÖ±ÏßAB½»ÓÚµãN£¬
¡ßµãEµÄºá×ø±êΪm£¬ÇÒµãEÔÚµÚ¶þÏóÏÞ£¬-1£¼m£¼0£¬
ÓÖ¡ßÕý·½ÐÎEFGHµÄ±ß³¤Îª10£¬
¡àµãFµÄºá×ø±êΪa£¬9£¼a£¼10£¬
¡ßÖ±ÏßABµÄ½âÎöʽΪy=$\frac{1}{2}$x+1£¬
¡àµãNµÄ×Ý×ø±ê$\frac{11}{2}$£¼Ny£¼6£¬
¡ßµãGµÄ×Ý×ø±ê11£¼Gy£¼10£¬
¡àGy£¾Ny£¬
¡à¶ÔÓÚ´óÓÚ»òµÈÓÚ-1µÄÈÎÒâʵÊým£¬FG±ßÓë¹ýA¡¢BÁ½µãµÄÖ±Ïß¶¼Óн»µã£®

µãÆÀ ±¾Ì⿼²é´ý¶¨ÏµÊý·¨È·¶¨¶þ´Îº¯Êý¡¢Ò»´Îº¯Êý½âÎöʽ£¬¿¼²éÈý½Çº¯ÊýµÄ¶¨Ò壬Õý·½ÐεÄÐÔÖʵÈ֪ʶ£¬Ñ§»áÓÃ×Öĸm±íʾÏàÓ¦µÄµãµÄ×ø±êÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬ÊÇÊýÐνáºÏµÄÒ»¸öºÃÌâÄ¿£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬A£¨0£¬4£©£¬B£¨3£¬0£©£¬C£¨4£¬2£©£¬ÇÒ·´±ÈÀýº¯ÊýͼÏó¾­¹ýµãC£®
£¨1£©·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{8}{x}$£¬Ö±ÏßAB½âÎöʽΪy=-$\frac{4}{3}$x+4£»
£¨2£©ÔÚÖ±½Ç×ø±êÏµÆ½ÃæÄÚ£¬È·¶¨µãD£¬Ê¹µÃÒÔµãA¡¢B¡¢C¡¢DΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬ÇëÇó³öµãDµÄ×ø±ê£»
£¨3£©ÔÚ·´±ÈÀýº¯ÊýµÄµÚÒ»ÏóÏÞͼÏóÉÏ£¬ÊÇ·ñ´æÔÚµãQ£¬Ê¹¡÷ABQµÄÃæ»ý×îС£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê¼°×îÐ¡Ãæ»ý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬µãOÊÇAC±ßÉϵÄÒ»¶¯µã£¬¹ýO×÷Ö±ÏßMN¡ÎBC£¬ÉèMN½»¡ÏBCAµÄƽ·ÖÏßÓÚµãE£¬½»¡ÏBCAµÄÍâ½Çƽ·ÖÏßÓÚµãF£®
£¨1£©ÇóÖ¤£ºEO=FO£»
£¨2£©µ±OµãÔ˶¯µ½ºÎ´¦Ê±£¬ËıßÐÎAECFÊǾØÐΣ¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬Ôڱ߳¤Îª1µÄСÕý·½ÐÎ×é³ÉµÄÍø¸ñÖУ¬¡÷ABCµÄ¶¥µã¾ùÔÚ¸ñµãÉÏ£¬Çë°´ÒªÇóÍê³ÉÏÂÁи÷Ì⣺
£¨1£©ÒÔÖ±ÏßBCΪ¶Ô³ÆÖá¡÷ABCµÄÖá¶Ô³ÆÍ¼ÐΣ¬µÃµ½¡÷A1BC£¬ÔÙ½«¡÷A1BCÈÆ×ŵãBÄæÊ±ÕëÐýת90¡ã£¬µÃµ½¡÷A2BC1£¬ÇëÒÀ´Î»­³ö¡÷A1BC¡¢¡÷A2BC1£»
£¨2£©ÒÔA1ÎªÎ»ËÆÖÐÐÄ£¬ÔÚ·½¸ñͼÖн«¡÷ABC·Å´óΪԭÀ´µÄ2±¶£¬µÃµ½¡÷A3B2C2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ò»¸ö³¤·½ÐÎ²ÝÆºµÄ³¤ÊÇ2xÃ×£¬¿í±È³¤ÉÙ4Ã×£¬
£¨1£©Èç¹û½«Õâ¿é²ÝƺµÄ³¤ºÍ¿íÔö¼Ó3Ã×£¬ÄÇ̫̾»ý»áÔö¼Ó¶àÉÙÆ½·½Ã×£¿
£¨2£©Çó³öµ±x=2Ê±Ãæ»ýÔö¼ÓµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£¬E¡¢A¡¢BÈýµãÔÚͬһֱÏßÉÏ£¬ADƽ·Ö¡ÏEAC£¬AD¡ÎBC£¬¡ÏB=50¡ã£¬Ôò¡ÏCµÄ¶ÈÊý50¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Çó²»µÈʽ×é$\left\{\begin{array}{l}{x-2¡Ý1}\\{2£¨x-1£©£¼x+3}\end{array}\right.$µÄÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®£¨1£©$2\sqrt{12}¡Á\frac{{\sqrt{3}}}{4}¡Â\sqrt{2}$£»                 
£¨2£©$\sqrt{45}$+$\sqrt{108}$+$\sqrt{1\frac{1}{3}}$-$\sqrt{125}$£»
£¨3£©£¨$\frac{1}{2}$£©-1¡Á£¨$\sqrt{3}$-$\sqrt{2}$£©0+$\frac{4}{\sqrt{8}}$-|-$\sqrt{2}$|
£¨4£©$£¨{7+4\sqrt{3}}£©£¨{7-4\sqrt{3}}£©-{£¨{3\sqrt{5}-1}£©^2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãA£¨-3b£¬0£©ÎªxÖḺ°ëÖáÉÏÒ»µã£¬µãB£¨0£¬4b£©ÎªyÖáÕý°ëÖáÉÏÒ»µã£¬ÆäÖÐbÂú×ã·½³Ì£º3£¨b+1£©=6£®
£¨1£©ÇóµãA¡¢BµÄ×ø±ê£»
£¨2£©µãCΪyÖḺ°ëÖáÉÏÒ»µã£¬ÇÒ¡÷ABCµÄÃæ»ýΪ12£¬ÇóµãCµÄ×ø±ê£»
£¨3£©ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¡÷PBCµÄÃæ»ýµÈÓÚ¡÷ABCµÄÃæ»ýµÄÒ»°ë£¿Èô´æÔÚ£¬Çó³öÏàÓ¦µÄµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸