【题目】如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.求S关于t的函数表达式;并求S最大时点P的坐标.
【答案】(1)y=﹣x2+2x+3;(2)在直线l上存在点M,使得四边形CDPM是平行四边形,点M的坐标为(1,6);(3)S=﹣t2+t,当t =时,S有最大值,此时P(,)
【解析】
(1)把点A、B坐标代入y=﹣x2+bx+c,利用待定系数法求解即可;
(2)先求出C、D坐标,假设直线l上存在点M,使得四边形CDPM是平行四边形,根据平行四边形性质,求出点P坐标,进而求出点M坐标;
(3)过点P作PF∥y轴,交BC于点F,求出直线BC解析式,表示出线段PF长,根据即可得到S关于t的函数解析式,再根据二次函数的性质即可求解.
解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,
,解得:,
∴抛物线的表达式为y=﹣x2+2x+3.
(2)在图1中,连接PC,交抛物线对称轴l于点E,
∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,
∴抛物线的对称轴为直线x=1.
当x=0时,y=﹣x2+2x+3=3,
∴点C的坐标为(0,3).
若四边形CDPM是平行四边形,则CE=PE,DE=ME,
∵点C的横坐标为0,点E的横坐标为1,
∴点P的横坐标t=1×2﹣0=2,
∴点P的坐标为(2,3),
∴点E的坐标为(1,3),
∴点M的坐标为(1,6).
故在直线l上存在点M,使得四边形CDPM是平行四边形,点M的坐标为(1,6).
(3)在图2中,过点P作PF∥y轴,交BC于点F.
设直线BC的解析式为y=mx+n(m≠0),
将B(3,0)、C(0,3)代入y=mx+n,
,解得:,
∴直线BC的解析式为y=﹣x+3.
∵点P的坐标为(t,﹣t2+2t+3),
∴点F的坐标为(t,﹣t+3),
∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,
∴ ,
∴当t =时,S有最大值,此时P(,).
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1,﹣2,3,4,随机摸取一个小球记下标号后放回,再随机摸取一个小球记下标号,则两次摸取的小球的标号之积为负数的概率为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“只要人人都献出一点爱,世界将变成美好的人间”,在新型肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区积极发起“援鄂捐款”活动倡议,有2500名居民踊跃参与献爱心.社区管理员随机抽查了部分居民捐款情况,统计图如图:
(1)计算本次共抽查居民人数,并将条形图补充完整;
(2)根据统计情况,请估计该社区捐款20元以上(含20元)的居民有多少人?
(3)该社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次中奖机会.为了活跃气氛.设计了两个抽奖方案:
方案一:转动转盘一次,转出红色可领取一份奖品;
方案二:转动转盘两次,两次都转出红色可领取一份奖品.(两个转盘都被平均分成3份)
(1)若转动一次转盘,求领取一份奖品的概率;
(2)如果你获得一次抽奖机会,你会选择哪个方案?请采用列表法或树状图说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图11①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图10②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据=1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,与x轴相交于A、B两点(点A在点B的右侧),点A的坐标为(m,0),且AB=4.
(1)填空:点B的坐标为 (用含m的代数式表示);
(2)把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,△ABP的面积为8:
①求抛物线的解析式(用含m的代数式表示);
②当0≤x≤1,抛物线上的点到x轴距离的最大值为时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明参加一个知识竞赛,该竞赛试题由10道选择题构成,每小题有四个选项,且只有一个选项正确.其给分标准为:答对一题得2分,答错一题扣1分,不答得0分,若10道题全部答对则额外奖励5分.小明对其中的8道题有绝对把握答对,剩下2道题完全不知道该选哪个选项.
(1)对于剩下的2道题,若小明都采用随机选择一个选项的做法,求两小题都答错的概率;
(2)从预期得分的角度分析,采用哪种做法解答剩下2道题更合算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com