【题目】如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.
(1)求抛物线的表达式;
(2)如图,当CP//AO时,求∠PAC的正切值;
(3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.
【答案】(1)抛物线的表达式为;(2);(3)P点的坐标是.
【解析】分析:
(1)由题意易得点A、C的坐标分别为(-4,0),(0,4),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;
(2)如下图,作PH⊥AC于H,连接OP,由已知条件先求得PC=2,AC=,结合S△ABC=S△OPC,可求得PH=,再由OA=OC得到∠CAO=45°,结合CP∥OA可得∠PCA=45°,即可得到CH=PH=,由此可得AH=,这样在Rt△APH中由tan∠PAC=即可求得所求答案了;
(3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=4,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.
详解:
(1)∵直线y=x+4经过点A、C,点A在x轴上,点C在y轴上
∴A点坐标是(﹣4,0),点C坐标是(0,4),
又∵抛物线过A,C两点,
∴
解得,
∴抛物线的表达式为;
(2)作PH⊥AC于H,
∵点C、P在抛物线上,CP//AO, C(0,4),A(-4,0)
∴P(-2,4),AC=,S△ABC=S△OPC,
∴PC=2,,
∴PH=,
∵A(﹣4,0),C(0,4),
∴∠CAO=45°.
∵CP//AO,
∴∠ACP=∠CAO=45°,
∵PH⊥AC,
∴CH=PH=,
∴.
∴;
(3)∵,
∴抛物线的对称轴为直线,
∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,
∴PQ∥AO,且PQ=AO=4.
∵P,Q都在抛物线上,
∴P,Q关于直线对称,
∴P点的横坐标是﹣3,
∵当x=﹣3时,,
∴P点的坐标是.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=8,BC=6,点D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使点A落在点A′处,当A′E⊥AC时,A′B=_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB的中点.
(1)求∠A的度数;
(2)求EF和AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
(1)根据图示填写下表:
(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.
求:(1)求∠CDB的度数;
(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.
(1)当圆P过点A时,求圆P的半径;
(2)分别联结EH和EA,当△ABE∽△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;
(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣8,点C 在数轴上表示的数是10.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度也向右匀速运动.
(1)运动t秒后,点B表示的数是 ;点C表示的数是 .(用含有t的代数式表示)
(2)求运动多少秒后,BC=4(单位长度);
(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式,若存在,求线段PD的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式(组):
(Ⅰ)解不等式:<
(Ⅱ)解不等式组
请结合题意填空,完成本题的解答;
(1)解不等式①,得: ;
(2)解不等式②,得: ;
(3)把不等式①和②的解集在如图数轴上表示出来;
(4)原不等式组的解集为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于点E,F是AB的中点,联结AE、EF,且AE⊥BE.
求证:(1)四边形BCEF是菱形;
(2).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com