【题目】如图,直线与轴、轴分别相交于点,点的坐标为(﹣8,0),点的坐标为(﹣6,0),点是第二象限内的直线上的一个动点,
(1)求k的值;
(2)在点的运动过程中,写出的面积与的函数表达式,并写出自变量的取值范围;
(3)探究:当运动到什么位置(求的坐标)时,的面积为,并说明理由.
【答案】(1)k=;(2)S=x+18(-8<x<0);(3)当运动到时,的面积为.
【解析】
(1)根据一次函数图象上点的坐标特征,把E点坐标代入y=kx+6即可计算出k的值;
(2)由于P点在直线y=x+6,则可设P点坐标为(x,x+6),根据三角形面积公式得到S与x的关系式,结合点P的位置即可写出自变量x的取值范围;
(3)将S=代入(2)中的解析式,解方程求得x的值,继而求得P点坐标即可.
(1)把E(-8,0)代入y=kx+6得-8k+6=0,
解得k=;
(2)∵点的坐标为(﹣6,0),
∴OA=6,
∵直线EF的解析式为y=x+6,点是第二象限内的直线EF上的一个动点,
∴设P点坐标为(x,x+6),
∴S=×6(x+6)=x+18(-8<x<0);
(3)当S=时,则x+18=,
解得x=-,
所以y==,
所以点P坐标为,
即当运动到时,的面积为.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=3,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,AB∥DC,连接BD,BE平分∠ABD,BE⊥AD,∠EBC和∠DCB的角平分线相交于点F,若∠ADC=110°,则∠F的度数为( )
A. 115° B. 110° C. 105° D. 100°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】节日里,兄弟两人在60米的跑道上进行短距离比赛,两人从出发点同时起跑,哥哥到达终点时,弟弟离终点还差12米.
(1)若哥哥的速度为10米/秒,
①求弟弟的速度;
②如果两人重新开始比赛,哥哥从起点向后退10米,兄弟同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.
(2)若哥哥的速度为m米/秒,
①弟弟的速度为________米/秒(用含m的代数式表示);
②如果两人想同时到达终点,哥哥应向后退多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的△ABC,若小方格边长为1,格点△ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识.
(1)在如图所示的网格平面内作出平面直角坐标系;
(2)作出△ABC关于y轴对称的三角形A1B1C1;
(3)判断△ABC的形状,并求出△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A,B的坐标分别为(1,0),(2,0).若二次函数y=x2+(a﹣3)x+3的图象与线段AB只有一个交点,则a的取值范围是_______________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一块直角三角形的木板,它的一条直角边AC长为1.5米,面积为1.5平方米.现在要把它加工成一个正方形桌面,甲、乙两人的加工方法分别如图(ⅰ)、(ⅱ)所示,记两个正方形面积分别为S1、S2,请通过计算比较S1与S2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.
(1)求证:DE是⊙O的切线.
(2)若∠B=30°,AB=8,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.
(1)求证:BC是⊙O的切线;
(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;
(3)若BE=8,sinB=,求DG的长,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com