精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是O的直径,AF是O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.

求证:(1)四边形FADC是菱形;

(2)FC是O的切线.

【答案】证明:(1)连接OC,

AF是O切线,AFAB。

CDAB,AFCD。

CFAD,四边形FADC是平行四边形。

AB是O的直径,CDAB,

设OC=x,

BE=2,OE=x﹣2

在RtOCE中,OC2=OE2+CE2

,解得:x=4

OA=OC=4,OE=2AE=6

在RtAED中,AD=CD

平行四边形FADC是菱形

(2)连接OF,

四边形FADC是菱形,FA=FC

AFO和CFO中,∴△AFO≌△CFO(SSS)

∴∠FCO=FAO=90°,即OCFC

点C在O上,FC是O的切线

【解析】

试题分析:(1)连接OC,由垂径定理,可求得CE的长,又由勾股定理,可求得半径OC的长,然后由勾股定理求得AD的长,即可得AD=CD,易证得四边形FADC是平行四边形,继而证得四边形FADC是菱形;

(2)连接OF,易证得AFO≌△CFO,继而可证得FC是O的切线

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为12345,若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,则称这种走法为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3451为第一次“移位”,这时他到达编号为1的点,然后从12为第二次“移位”.若小明从编号为4的点开始,第2020次“移位”后,他到达编号为______的点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABBC2,以AB为直径的⊙O分别交BCAC于点DE且点DBC的中点.

1)求证:ABC为等边三角形;

2)求DE的长;

3)在线段AB的延长线上是否存在一点P,使PBD≌△AED?若存在,请求出PB的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某摩托车厂本周计划每日生产450辆摩托车,由于工人实行轮休, 每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表: [增加的辆数为正数,减少的辆数为负数]

星期

增减

5

+7

3

+4

+10

9

25

1)本周星期六生产多少辆摩托车?

2)本周总产量与计划产量相比,是增加了还是减少了?为什么?

3)产量最多的那天比产量最少的那天多生产多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,AB OC,B,C的坐标分别为(15,8,21,0,动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.

1)在t3,M点坐标   ,N点坐标   ;

2)当t为何值时,四边形OAMN是矩形?

3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3cm,∠ABE=,且AB=AE,则DE的长度为(

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tanα的值等于____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的角平分线CF于点F,求证:AE=EF

经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AME≌△ECF,所以AE=EF

在此基础上,同学们作了进一步的研究:

1)小颖提出:如图2,如果把E是边BC的中点改为E是边BC上(除BC外)的任意一点,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

2)小华提出:如图3,点EBC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位在疫情期间用元购进两种口罩个,购买种口罩与购买种口罩的费用相同,且种口罩的单价是种口罩单价的.

两种口罩的单价各是多少元?

若计划用不超过元的资金再次购进两种口罩共个,已知两种口罩的进价不变,求种口罩最多能购买多少个?

查看答案和解析>>

同步练习册答案