【题目】如图,点D,E在△ABC的边BC上,连接AD,AE. ①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:(1)①②③;(2)①③②;(3)②③①.
(1)以上三个命题是真命题的为(直接答题号) ;
(2)请选择一个真命题进行证明(先写出所选命题,然后证明).
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据真命题的定义即可得出结论,
(2)根据全等三角形的判定方法及全等三角形的性质即可证明.
(1)①②③,①③②,②③①;
(2)选择①③②,证明如下:
∵AB=AC,
∴∠B=∠C,
在△ABD和△ACE中,
∵,
∴△ABD≌△ACE(SAS),
∴AD=AE.
选择①②③,证明如下:
∵AB=AC,
∴∠B=∠C,
同理∠ADE=∠AED,
∴180°-∠ADE=180°-∠AED,
即∠ADB=∠AEC,
在△ABD和△ACE中,
∵,
∴△ABD≌△ACE,
∴BD=CE.
选择②③①,
∵AD=AE,
∴∠ADE=∠AED,
∴180°-∠ADE=180°-∠AED,
即∠ADB=∠AEC,
在△ABD和△ACE中,
∵,
∴△ABD≌△ACE,
∴AB=AC.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=﹣x2+bx+3的图象与x轴交于A、C两点(点A在点C的左侧),与y轴交于点B,且OA=OB.
(1)求线段AC的长度;
(2)若点P在抛物线上,点P位于第二象限,过P作PQ⊥AB,垂足为Q.已知PQ=,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.
(1)求证:CG是⊙O的切线.
(2)求证:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,点P是AB上一动点.若△PAD与△PBC是相似三角形,则满足条件的点P的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 已知抛物线经过A(-2,0)、B(4,0)、C(0,4)三点.
(1)求此抛物线的解析式;
(2)此抛物线有最大值还是最小值?请求出其最大或最小值;
(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元。
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售。设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m处,过了2s后,测得小汽车与车速检测仪间距离为m,这辆小汽车超速了吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数(k≠0)的图象经过圆心P,则k=________________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=640,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A5= ______ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com