精英家教网 > 初中数学 > 题目详情

【题目】如图,已知

1)求证:

2)求证:

【答案】1)见解析;(2)见解析

【解析】

1)根据垂直的定义和等式的基本性质可得∠EAC=BAF,然后利用SAS即可证出

2)设ABEC的交点为O,根据全等三角形的性质可得∠AEC=ABF,然后根据对顶角相等可得∠AOE=BOM,再根据三角形的内角和定理和等量代换即可求出∠OMB=90°,最后根据垂直的定义即可证明.

解:(1)∵

∴∠EAB=CAF=90°

∴∠EAB+∠BAC=CAF+∠BAC

∴∠EAC=BAF

在△AEC和△ABF

SAS

2)设ABEC的交点为O,如下图所示

∴∠AEC=ABF

∵∠AOE=BOM

∴∠OMB=180°-∠ABF-∠BOM=180°-∠AEC-∠AOE=EAB=90°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】从宁海县到某市,可乘坐普通列车或高铁,已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.

1)求普通列车的行驶路程;

2)若高铁的平均速度(千米/时)是普通列车的平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A110),点B06),点PBC边上的动点(点P不与点BC重合),经过点OP折叠该纸片,得点B′和折痕OP.设BP=t

)如图,当BOP=300时,求点P的坐标;

)如图,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m

)在()的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形的对角线相交于点.

1)求证:四边形是菱形;

2)若,求矩形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+bnn为非负整数)展开式的各项系数的规律,例如:(a+b01,它只有一项,系数为1;(a+b1a+b,它有两项,系数分别为11;(a+b2a2+2ab+b2,它有三项,系数分别为121;(a+b3a3+3a2b+3ab2+b3,它有四项,系数分别为1331;根据以上规律,(a+b5展开式共有六项,系数分别为______,拓展应用:(ab4_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形ABCD中,EAB边的中点,DEAC于点FACDE把它分成的四部分的面积分别为S1S2S3S4,下面结论:

只有一对相似三角形

②EFED=12

③S1S2S3S4=1245

其中正确的结论是(  )

A①③ B C D①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊿中,,点分别在 边上,且, .

⑴.求证:⊿是等腰三角形;

⑵.当 时,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市出租车计费办法如图所示.根据图象信息,下列说法错误的是(  )

A. 出租车起步价是10

B. 3千米内只收起步价

C. 超过3千米部分(x3)每千米收3

D. 超过3千米时(x3)所需费用yx之间的函数关系式是y=2x+4

查看答案和解析>>

同步练习册答案