精英家教网 > 初中数学 > 题目详情

【题目】如图,RtABC中,∠ACB90°,ACBC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的点A′处,若AOOB2,则阴影部分面积为(  )

A. πB. π1C. +1D.

【答案】D

【解析】

根据等腰直角三角形的性质求出AB,再根据旋转的性质可得A′BAB,然后求出∠OA′B30°,再根据直角三角形两锐角互余求出∠A′BA60°,即旋转角为60°,再根据S阴影S扇形ABA′+SA′BC′SABCS扇形CBC′S扇形ABA′S扇形CBC′,然后利用扇形的面积公式列式计算即可得解.

∵∠ACB90°ACBC

∴△ABC是等腰直角三角形,

AB2OA2OB4BC2

∵△ABC绕点B顺时针旋转点AA′处,

BA′AB

BA′2OB

∴∠OA′B30°

∴∠A′BA60°

即旋转角为60°

S阴影S扇形ABA′+SA′BC′SABCS扇形CBC′

S扇形ABA′S扇形CBC′

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1Rt△ACB 中,C=90°,点DAC上,CBD=∠A,过AD两点的圆的圆心OAB上.

1)利用直尺和圆规在图1中画出O(不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);

2)判断BD所在直线与(1)中所作的O的位置关系,并证明你的结论;

3)设OAB于点E,连接DE,过点EEFBCF为垂足,若点D是线段AC的黄金分割点(即),如图2,试说明四边形DEFC是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).

(1)请在图中,画出ABC向左平移6个单位长度后得到的△A1B1C1

(2)以点O为位似中心,将ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园手机现象越来越受到社会的关注.为了了解学生和家长对中学生带手机的态度,某记者随机调查了城区若干名学生和家长的看法,调查结果分为:赞成、无所谓、反对,并将调查结果绘制成如下不完整的统计表和统计图:

根据以上图表信息,解答下列问题:

1)统计表中的A________

2)统计图中表示家长赞成的圆心角的度数为________度;

3)从这次接受调查的学生中,随机抽查一个,恰好是持反对态度的学生的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知开口向下的抛物线y=ax2-2ax+2y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BDx轴交于点M,直线AB与直线OD交于点N

(1)求点D的坐标.

(2)求点M的坐标(用含a的代数式表示).

(3)当点N在第一象限,且∠OMB=ONA时,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.

(1)求证:CD是⊙O的切线;

(2)过点B作⊙O的切线交CD的延长线于点E,若BC=9,tan∠CDA=,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABCABAC10BC16

1)作△ABC的外接圆O(用圆规和直尺作图,不写作法,但要保留作图痕迹)

2)求OA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,,按以下步骤作图:①分别以点和点为圆心,为圆心,大于号的长为半径面狐,两弧交于点:②做直线,且恰好经过点,与交于点,连接,则的值为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品草莓,已知该草莓的成本为每千克10元,草莓成熟后投入市场销售,经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.

1)求yx的函数关系式,并写出x的取值范围.

2)当该品种草莓的定价为多少时,每天销售获得利润最大?最大利润是多少?

3)某村今年草莓采摘期限30天,预计产量6000千克,则按照(2)中的方式进行销售,能否销售完这批草莓?请说明理由.

查看答案和解析>>

同步练习册答案