【题目】(1)如图1,已知直线,在直线上取两点,为直线上的两点,无论点移动到任何位置都有:____________(填“>”、“<”或“=”)
(2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.
(3)如图3,王爷爷和李爷爷两家田地形成了四边形,中间有条分界小路(图中折线),左边区域为王爷爷的,右边区域为李爷爷的。现在准备把两家田地之间的小路改为直路,请你用有关的几何知识,按要求设计出修路方案,并在图中画出相应的图形,说明方案设计理由。(不计分界小路与直路的占地面积).
【答案】(1);(2)见解析;(3)见解析
【解析】
(1)根据平行线间的距离处处相等,所以无论点在m上移动到何位置,总有与同底等高,因此它们的面积相等;
(2)利用同底等高的三角形的面积相等即可求得设计方案;
(3)连结,过点作的平行线,连结或,则或即为所修直路.
(1)∵与有共同的边AB,
又∵,
∴与的高相等,即与同底等高,
∴=,
故答案为:=;
(2)方法一:
连结,将的区域用于种植大豆,的区域用于种植芝麻,理由如下:
在梯形ABCD中,,
则与同底等高,
∴,
∴,
即,
又由可知与同底等高,
∴,
∴该设计方案把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变;
方法二
连结,将的区域用于种植大豆,的区域用于种植芝麻,理由如下:
在梯形ABCD中,,
则与同底等高,
∴,
∴,
即,
又由可知与同底等高,
∴,
∴该设计方案把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变;
(3)方法一
连结,过点作的平行线:连结,即为所修直路.
将四边形的区域分给王爷爷,四边形的区域分给李爷爷,理由如下:
∵,则与同底等高,
∴,则,
即,
又由可知与同底等高,
∴,
∴满足修路方案;
方法二:
连结,过点作的平行线:连结,即为所修直路.
将四边形的区域分给王爷爷,四边形的区域分给李爷爷,理由如下:
∵,则与同底等高,
∴,则,
即,
又由可知与同底等高,
∴,
∴满足修路方案.
科目:初中数学 来源: 题型:
【题目】根据要求回答问题:
(1)【提出问题】
已知:菱形ABCD的变长为4,∠ADC=60°,△PEF为等边三角形,当点P与点D重合,点E在对角线AC上时(如图1所示),求AE+AF的值;
(2)【类比探究】
在上面的问题中,如果把点P沿DA方向移动,使PD=1,其余条件不变(如图2),你能发现AE+AF的值是多少?请直接写出你的结论;
(3)【拓展迁移】
在原问题中,当点P在线段DA的延长线上,点E在CA的延长线上时(如图3),设AP=m,则线段AE、AF的长与m有怎样的数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】满足下列条件的△ABC不是直角三角形的是()
A. BC=1,AC=2,AB=
B. BC=1,AC=2,AB=
C. BC:AC:AB=3:4:5
D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.
(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?
(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,直线l1:y=﹣x+n过点A(﹣1,3),双曲线C:y= (x>0),过点B(1,2),动直线l2:y=kx﹣2k+2(常数k<0)恒过定点F.
(1)求直线l1 , 双曲线C的解析式,定点F的坐标;
(2)在双曲线C上取一点P(x,y),过P作x轴的平行线交直线l1于M,连接PF.求证:PF=PM.
(3)若动直线l2与双曲线C交于P1 , P2两点,连接OF交直线l1于点E,连接P1E,P2E,求证:EF平分∠P1EP2 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:AD⊥CF;
(2)连接AF,试判断△ACF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200﹣2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com