精英家教网 > 初中数学 > 题目详情

【题目】生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图)长为,宽为,分别回答下列问题:

1)为了保证能折成图的形状(即纸条两端均超出点),试求的取值范围.

2)如果不但要折成图的形状,而且为了美观,希望纸条两端超出点的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点与点的距离(用表示)

【答案】(1) x5.2

(2) 131.5x

【解析】

1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x,那么纸条使用的长度应大于0,小于纸条总长度.

2)是轴对称图形,那么AM=AP+x

解答:解:(1)由折纸过程可知05x26∴0x5.2

2为轴对称图形,∴AM=+x=13-1.5x

即点M与点A的距离是(13-1.5xcm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】等边中,在边上,绕顶点旋转到位置,

1)指出旋转中心,旋转方向,其中一个旋转角及其大小.

2)指出的大小以及联结的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点An,如果点An,与原点的距离不少于20,那么n的最小值是(

A. 11B. 12C. 13D. 20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的顶点为C,对称轴为直线,且经过点A(3,-1),与y轴交于点B.

(1)求抛物线的解析式;

(2)判断ABC的形状,并说明理由;

(3)经过点A的直线交抛物线于点P,交x轴于点Q,若,试求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用表示直角三角形的两直角边,下列四个说法:①;②;③;④;其中说法正确的是  

A. ①②B. ①②③C. ①②④D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+b与双曲线y=(k是常数,k0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.点Px轴.

(1)求直线和双曲线的解析式;

(2)若△BCP的面积等于2,求P点的坐标;

(3)求PA+PC的最短距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OC在∠BOD内.

1)如果∠AOC和∠BOD都是直角.

①若∠BOC=60°,则∠AOD的度数是   

②猜想∠BOC与∠AOD的数量关系,并说明理由;

2)如果∠AOC=BOD=x°AOD=y°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+mx轴交于点A-30),直线y=-x+2x轴、y轴分别交于BC两点,并与直线y=x+m相交于点D

1)点D的坐标为

2)求四边形AOCD的面积;

3)若点Px轴上一动点,当PD+PC的值最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)

(2)(﹣72)×2

(3)

(4)

(5)3m2﹣mn﹣2m2+4mn

(6)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2

查看答案和解析>>

同步练习册答案