精英家教网 > 初中数学 > 题目详情

【题目】下面关于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a为任意实数;⑤=x-1一元二次方程的个数是  

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程, 且二次项系数不等于0,即可进行判定,

ax2+x+2=0, 中二次项系数有可能为0, 不一定是一元二次方程, 不符合题意,

3(x-9)2-(x+1)2=1符合一元二次方程的定义,符合题意,因为未知数出现在分母上,是分式方程,不符合题意,x2-a=0(a为任意实数),符合一元二次方程的定义,符合题意,是无理方程,不符合题意,因此属于一元二次方程的共有2个,

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从AB两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),yx之间的函数关系如图所示,则当甲车到达B地时,乙车距A_____千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,边ABAC的垂直平分线分别交BCDE

1)若BC=5,求ADE的周长.

2)若∠BAD+CAE=60°,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线,交CE的延长线于点F,且AF=BD,连接BF.

(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.

(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=   

②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是   ;(整点指横坐标、纵坐标都为整数的点)

(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;

(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EFBCABACEF.试回答:

(1)图中等腰三角形是 .猜想:EFBECF之间的关系是 .理由:

(2)如图②,若ABAC,图中等腰三角形是 .在第(1)问中EFBECF间的关系还存在吗?

(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OEBCABE,交ACF.这时图中还有等腰三角形吗?EFBECF关系又如何?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,B,C三点在同一直线上,分别以AB,BCAB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AEBD于点M,连接CDBE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BDAE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.

(1)画出ABC向上平移6个单位得到的A1B1C1

(2)以点C为位似中心,在网格中画出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比为2:1,并直接写出点A2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中.


1)若点EF分别在ABAD上,且AE=DF.试判断DECF的数量及位置关系,并说明理由;
2)若PQMN是正方形ABCD各边上的点,PQMN相交,且PQ=MN,问PQMN成立吗?为什么?

查看答案和解析>>

同步练习册答案