精英家教网 > 初中数学 > 题目详情

【题目】△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.
(1)求过点B′的反比例函数解析式;
(2)求线段CC′的长.

【答案】
(1)解:如图所示:由图知B点的坐标为(﹣3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,

点B的对应点B′的坐标为(1,3),

设过点B′的反比例函数解析式为y=

∴k=3×1=3,

∴过点B′的反比例函数解析式为y=


(2)解:∵C(﹣1,2),

∴OC= =

∵△ABC以坐标原点O为旋转中心,顺时针旋转90°,

∴OC′=OC=

∴CC′= =


【解析】(1)据图形旋转方向以及旋转中心和旋转角度得出对应点,根据待定系数法,即可求出解.(2)根据勾股定理求得OC,然后根据旋转的旋转求得OC′,最后根据勾股定理即可求得.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为6,点E是边AB上一点,点P是对角线BD上一点,且PEPC

求证:PCPE

BE2,求PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰三角形ABC的底角为30,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E,连接CD.
(1)求证:DE为⊙O的切线;
(2)若AB=4 ,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有ABCD四个整数点(即各点均表示整数),且2AB=BC=3CD,若AD两点表示的数分别为﹣56,且AC的中点为EBD的中点为MBC之间距点B的距离为BC的点N,则该数轴的原点为(  )

A. E B. F C. M D. N

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c=0;④若点B(﹣ ,y1)、C(﹣ ,y2)为函数图象上的两点,则y1<y2 , 其中正确结论是:(填上序号即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=120°,射线OCOA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线ODOB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OCOD同时旋转,设旋转的时间为t(0≤t≤15).

(1)当t为何值时,射线OCOD重合;

(2)当t为何值时,∠COD=90°;

(3)试探索:在射线OCOD旋转的过程中,是否存在某个时刻,使得射线OCOBOD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

A、B、C为数轴上三点,若点CA的距离是点CB的距离2倍,我们就称点C是【A,B】的好点.

如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点.

知识运用:

(1)如图1,表示0的点D到点A的距离是1,到点B的距离是2,那么点D 【A,B】的好点;(请在横线上填是或不是

(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2.数 所对应的点是【M,N】的好点(写出所有可能的情况);

拓展提升:

(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过几秒时,P、AB中恰有一个点为其余两点的好点?(写出所有情况)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上两点 AB 所表示的数分别为 a b,且满足|a3|(b9)20180O 为原点.

(1) 试求 a b 的值

(2) C O 点出发向右运动,经过 3 秒后点 C A 点的距离是点 C B 点距离的 3 倍,求点 C 的运动速 度?

(3) D 1 个单位每秒的速度从点 O 向右运动,同时点 P 从点 A 出发以 5 个单位每秒的速度向左运动, 点 Q 从点 B 出发,以 20 个单位每秒的速度向右运动.在运动过程中,MN 分别为 PDOQ 的中点,问的值是否发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分已知:如图,在ABC中AB=AC,ADBC,垂足为D,AN是ABC外角CAM的平分线,CEAN,垂足为E,猜想四边形ADCE的形状,并给予证明

查看答案和解析>>

同步练习册答案