精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数yax2+bx+ca≠0)的图象与x轴交于AB两点,与y轴交于C点,且对称轴为x1,点B坐标为(﹣10),则下面的四个结论,其中正确的个数为(  )

2a+b04a2b+c0ac0④当y0时,﹣1x4

A.1B.2C.3D.4

【答案】B

【解析】

①函数对称轴为:x=﹣1,解得:b=﹣2a,即可求解;②x=﹣2时,y4a2b+c0,即可求解;③a0c0,故ac0,即可求解;④当y0时,﹣1x3,即可求解.

B坐标为(﹣10),对称轴为x1,则点A30),

①函数对称轴为:x=﹣1,解得:b=﹣2a,故①正确,符合题意;

x=﹣2时,y4a2b+c0,故②正确,符合题意;

a0c0,故ac0,故③错误,不符合题意;

④当y0时,﹣1x3,故④错误,不符合题意;

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).

(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;

(2)写出点A′,B′,C′的坐标:

A′   ,B′   ,C′   

(3)(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC≌△DEC,公共顶点为CBDE上,则有结论①∠ACD=∠BCE=∠ABD;②∠DAC+DBC180°;③△ADC∽△BEC;④CDAB,其中成立的是(  )

A.①②③B.只有②④C.只有①和②D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列材料,然后解答问题.

材料:从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线例如:如图AD把△ABC分成△ABD与△ADC,若△ABD是等腰三角形,且△ADC∽△BAC,那么AD就是△ABC的完美分割线.

解答下列问题:

1)如图,在△ABC中,∠B40°,AD是△ABC的完美分割线,且△ABD是以AD为底边的等腰三角形,则∠CAD   度.

2)在△ABC中,∠B42°,AD是△ABC的完美分割线,且△ABD是等腰三角形,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx3x轴交于AB两点(A点在B点左侧),A(﹣10),B30),直线l与抛物线交于AC两点,其中C点的横坐标为2

1)求抛物线的函数解析式;

2P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;

3)点G是抛物线上的动点,在x轴上是否存在点F,使ACFG这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CFAD

(1) 求证:EOB的中点

(2) AB8,求CD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=ACADBC于点DBC=10cmAD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交ABACADEFH,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t0).
1)当t=2时,连接DEDF,求证:四边形AEDF为菱形;
2)在整个运动过程中,问所形成的△PEF是否存在最大面积;如果存在请求出,如果不存在说明理由.
3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点上,于点于点,当时,________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18m的地面上,若测角仪的高度为1.5m,测得教学楼的顶部A处的仰角为30°,则教学楼的高度是(    

A.55.5mB.54mC.19.5mD.18m

查看答案和解析>>

同步练习册答案